IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp1158-1171.html
   My bibliography  Save this article

Incorporating bioenergy into sustainable landscape designs

Author

Listed:
  • Dale, Virginia H.
  • Kline, Keith L.
  • Buford, Marilyn A.
  • Volk, Timothy A.
  • Tattersall Smith, C.
  • Stupak, Inge

Abstract

The paper describes an approach to landscape design that focuses on integrating bioenergy production with other components of environmental, social and economic systems. Landscape design as used here refers to a spatially explicit, collaborative plan for management of landscapes and supply chains. Landscape design can involve multiple scales and build on existing practices to reduce costs or enhance services. Appropriately applied to a specific context, landscape design can help people assess trade-offs when making choices about locations, types of feedstock, transport, refining and distribution of bioenergy products and services. The approach includes performance monitoring and reporting along the bioenergy supply chain. Examples of landscape design applied to bioenergy production systems are presented. Barriers to implementation of landscape design include high costs, the need to consider diverse land-management objectives from a wide array of stakeholders, up-front planning requirements, and the complexity and level of effort needed for successful stakeholder involvement. A landscape design process may be stymied by insufficient data or participation. An impetus for coordination is critical, and incentives may be required to engage landowners and the private sector. Hence devising and implementing landscape designs for more sustainable outcomes require clear communication of environmental, social, and economic opportunities and concerns.

Suggested Citation

  • Dale, Virginia H. & Kline, Keith L. & Buford, Marilyn A. & Volk, Timothy A. & Tattersall Smith, C. & Stupak, Inge, 2016. "Incorporating bioenergy into sustainable landscape designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1158-1171.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:1158-1171
    DOI: 10.1016/j.rser.2015.12.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115014215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Gold, 2011. "Bio-energy supply chains and stakeholders," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(4), pages 439-462, April.
    2. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    3. Ruud Kempener & Jessica Beck & Jim Petrie, 2009. "Design and Analysis of Bioenergy Networks," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 284-305, April.
    4. Pasimeni, Maria Rita & Petrosillo, Irene & Aretano, Roberta & Semeraro, Teodoro & De Marco, Antonella & Zaccarelli, Nicola & Zurlini, Giovanni, 2014. "Scales, strategies and actions for effective energy planning: A review," Energy Policy, Elsevier, vol. 65(C), pages 165-174.
    5. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    6. Manos, Basil & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos & Papadopoulou, Olympia, 2014. "Agro-energy districts contributing to environmental and social sustainability in rural areas: Evaluation of a local public–private partnership scheme in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 85-95.
    7. Arano, Kathryn G. & Munn, Ian A., 2006. "Evaluating forest management intensity: A comparison among major forest landowner types," Forest Policy and Economics, Elsevier, vol. 9(3), pages 237-248, December.
    8. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    9. Donald Mead & Charles Smith, 2012. "Principles of nutrient management for sustainable forest bioenergy production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(2), pages 152-164, September.
    10. Buchholz, Thomas & Rametsteiner, Ewald & Volk, Timothy A. & Luzadis, Valerie A., 2009. "Multi Criteria Analysis for bioenergy systems assessments," Energy Policy, Elsevier, vol. 37(2), pages 484-495, February.
    11. Hansen, J. W., 1996. "Is agricultural sustainability a useful concept?," Agricultural Systems, Elsevier, vol. 50(2), pages 117-143.
    12. Schlegel Stephanie & Kaphengst Timo, 2007. "European Union Policy on Bioenergy and the Role of Sustainability Criteria and Certification Systems," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-19, December.
    13. Muth, D.J. & Bryden, K.M. & Nelson, R.G., 2013. "Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment," Applied Energy, Elsevier, vol. 102(C), pages 403-417.
    14. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    15. Söderberg, Charlotta & Eckerberg, Katarina, 2013. "Rising policy conflicts in Europe over bioenergy and forestry," Forest Policy and Economics, Elsevier, vol. 33(C), pages 112-119.
    16. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    17. Upreti, Bishnu Raj, 2004. "Conflict over biomass energy development in the United Kingdom: some observations and lessons from England and Wales," Energy Policy, Elsevier, vol. 32(6), pages 785-800, April.
    18. Henry Venema & Paul Calamai, 2003. "Bioenergy Systems Planning Using Location–Allocation and Landscape Ecology Design Principles," Annals of Operations Research, Springer, vol. 123(1), pages 241-264, October.
    19. Darshini, Dina & Dwivedi, Puneet & Glenk, Klaus, 2013. "Capturing stakeholders´ views on oil palm-based biofuel and biomass utilisation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 1128-1137.
    20. Langholtz, Matthew & Graham, Robin & Eaton, Laurence & Perlack, Robert & Hellwinkel, Chad & De La Torre Ugarte, Daniel G., 2012. "Price projections of feedstocks for biofuels and biopower in the U.S," Energy Policy, Elsevier, vol. 41(C), pages 484-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kienast, Felix & Huber, Nica & Hergert, Rico & Bolliger, Janine & Moran, Lorena Segura & Hersperger, Anna M., 2017. "Conflicts between decentralized renewable electricity production and landscape services – A spatially-explicit quantitative assessment for Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 397-407.
    2. Oskar Englund & Ioannis Dimitriou & Virginia H. Dale & Keith L. Kline & Blas Mola‐Yudego & Fionnuala Murphy & Burton English & John McGrath & Gerald Busch & Maria Cristina Negri & Mark Brown & Kevin G, 2020. "Multifunctional perennial production systems for bioenergy: performance and progress," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    3. Sanz-Hernández, Alexia & Jiménez-Caballero, Paula & Zarauz, Irene, 2022. "Gender and women in scientific literature on bioeconomy: A systematic review," Forest Policy and Economics, Elsevier, vol. 141(C).
    4. Nogueira, Luiz Augusto Horta & Antonio de Souza, Luiz Gustavo & Cortez, Luís Augusto Barbosa & Leal, Manoel Regis Lima Verde, 2017. "Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The path from feasibility to acceptability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 292-308.
    5. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    7. Matthew Langholtz & Ingrid Busch & Abishek Kasturi & Michael R. Hilliard & Joanna McFarlane & Costas Tsouris & Srijib Mukherjee & Olufemi A. Omitaomu & Susan M. Kotikot & Melissa R. Allen-Dumas & Chri, 2020. "The Economic Accessibility of CO 2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US," Land, MDPI, vol. 9(9), pages 1-24, August.
    8. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of Suitable Conditions for the Sustainable Production of Aviation Fuels in Brazil," Land, MDPI, vol. 10(7), pages 1-22, July.
    10. Králík, T. & Knápek, J. & Vávrová, K. & Outrata, D. & Romportl, D. & Horák, M. & Jandera, J., 2023. "Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential – A case study of the Czech Republic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Miyuki Iiyama & Athanase Mukuralinda & Jean Damascene Ndayambaje & Bernard Musana & Alain Ndoli & Jeremias G. Mowo & Dennis Garrity & Stephen Ling & Vicky Ruganzu, 2018. "Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management Strategies—Evidence from Rwanda," Sustainability, MDPI, vol. 10(5), pages 1-24, April.
    12. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
    13. Milis, Kevin & Peremans, Herbert & Springael, Johan & Van Passel, Steven, 2019. "Win-win possibilities through capacity tariffs and battery storage in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Di Lucia, Lorenzo & Usai, Domenico & Woods, Jeremy, 2018. "Designing landscapes for sustainable outcomes – The case of advanced biofuels," Land Use Policy, Elsevier, vol. 73(C), pages 434-446.
    15. Pulighe, Giuseppe & Bonati, Guido & Colangeli, Marco & Morese, Maria Michela & Traverso, Lorenzo & Lupia, Flavio & Khawaja, Cosette & Janssen, Rainer & Fava, Francesco, 2019. "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 58-70.
    16. Mahla Tayefi Nasrabadi, 2022. "How do nature-based solutions contribute to urban landscape sustainability?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 576-591, January.
    17. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    18. Mari Jönsson & Jörgen Sjögren & Björn Hannrup & Anders Larsolle & Ulla Mörtberg & Maria Nordström & Bengt A. Olsson & Monika Strömgren, 2020. "A Spatially Explicit Decision Support System for Assessment of Tree Stump Harvest Using Biodiversity and Economic Criteria," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    19. C. Tattersall Smith & Brenna Lattimore & Göran Berndes & Niclas Scott Bentsen & Ioannis Dimitriou & J.W.A. (Hans) Langeveld & Evelyne Thiffault, 2017. "Opportunities to encourage mobilization of sustainable bioenergy supply chains," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    20. Giuseppe Pulighe & Guido Bonati & Stefano Fabiani & Tommaso Barsali & Flavio Lupia & Silvia Vanino & Pasquale Nino & Pasquale Arca & Pier Paolo Roggero, 2016. "Assessment of the Agronomic Feasibility of Bioenergy Crop Cultivation on Marginal and Polluted Land: A GIS-Based Suitability Study from the Sulcis Area, Italy," Energies, MDPI, vol. 9(11), pages 1-18, October.
    21. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    4. Hermanns, Till & Helming, Katharina & König, Hannes J. & Schmidt, Katharina & Li, Qirui & Faust, Heiko, 2017. "Sustainability impact assessment of peatland-use scenarios: Confronting land use supply with demand," Ecosystem Services, Elsevier, vol. 26(PB), pages 365-376.
    5. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    6. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    7. Gökhan Memişoğlu & Halit Üster, 2016. "Integrated Bioenergy Supply Chain Network Planning Problem," Transportation Science, INFORMS, vol. 50(1), pages 35-56, February.
    8. Eswarlal, Vimal Kumar & Vasudevan, Geoffrey & Dey, Prasanta Kumar & Vasudevan, Padma, 2014. "Role of community acceptance in sustainable bioenergy projects in India," Energy Policy, Elsevier, vol. 73(C), pages 333-343.
    9. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    10. Filipović, Sanja & Radovanović, Mirjana & Golušin, Vladimir, 2018. "Macroeconomic and political aspects of energy security – Exploratory data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 428-435.
    11. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    12. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    13. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    14. Nogueira, Luiz Augusto Horta & Antonio de Souza, Luiz Gustavo & Cortez, Luís Augusto Barbosa & Leal, Manoel Regis Lima Verde, 2017. "Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The path from feasibility to acceptability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 292-308.
    15. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    16. Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
    17. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    18. Sergii Kyryzyuk & Vitaliy Krupin & Olena Borodina & Adam Wąs, 2020. "Crop Residue Removal: Assessment of Future Bioenergy Generation Potential and Agro-Environmental Limitations Based on a Case Study of Ukraine," Energies, MDPI, vol. 13(20), pages 1-23, October.
    19. Tate, Graham & Mbzibain, Aurelian, 2011. "The future contribution of bioenergy enterprises to rural business viability in the United Kingdom," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 1(2), pages 1-15.
    20. Alsaleh, Mohd & Abdul-Rahim, A.S. & Mohd-Shahwahid, H.O., 2017. "Determinants of technical efficiency in the bioenergy industry in the EU28 region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1331-1349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:1158-1171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.