IDEAS home Printed from https://ideas.repec.org/p/ags/aare01/125867.html
   My bibliography  Save this paper

Economic evaluation of alternative irrigation practices for sugarcane production in the Burdekin Delta

Author

Listed:
  • Qureshi, Muhammad Ejaz
  • Mallawaarachchi, Thilak
  • Wegener, Malcolm K.
  • Bristow, Keith L.
  • Charlesworth, Philip B.
  • Lisson, Shaun N.

Abstract

The Burdekin delta in north Queensland is a major irrigation area producing over 35,000 ha of irrigated sugarcane and other crops. This area is unique because it overlies shallow aquifers and relies heavily on groundwater supply for irrigation water. The long-term 'health' of the groundwater systems is therefore critical to the economic and environmental well being of the whole region. The Delta Water Boards are responsible for the management and replenishment of the groundwater systems, and promote a total systems approach in the development and adoption of best practice irrigation options. Application of economic analyses can assist in determining private and social benefits of irrigation management options. In particular, detail economic modelling can incorporate the scarcity of water resources, its social opportunity cost, and evaluate alternative water management otions to maximse net social benefits. A multi-period mathematical programming model is therefore being developed to estimate the responsiveness of water demand to price changes and to alternative water management and irrigation practices. This paper presents preliminary results of economic modelling, the aim being to improve understanding of likely impact on income levels of growers and the Water Boards when growers are encouraged to adopt more efficient irrigation practices.

Suggested Citation

  • Qureshi, Muhammad Ejaz & Mallawaarachchi, Thilak & Wegener, Malcolm K. & Bristow, Keith L. & Charlesworth, Philip B. & Lisson, Shaun N., 2001. "Economic evaluation of alternative irrigation practices for sugarcane production in the Burdekin Delta," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125867, Australian Agricultural and Resource Economics Society.
  • Handle: RePEc:ags:aare01:125867
    DOI: 10.22004/ag.econ.125867
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/125867/files/Qureshi1.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.125867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    2. Mallawaarachchi, Thilak & Hall, Nigel H. & Phillips, Brian, 1992. "Investment in Water Saving Technology on Horticultural Farms," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 60(02-1), pages 1-14, August.
    3. Chewings, R.A. & Pascoe, Sean, 1988. "Demand For Water in the Murray Valley, New South Wales: An Application of Linear Programming," 1988 Conference (32nd), February 8-11, 1988, Melbourne, Australia 143791, Australian Agricultural and Resource Economics Society.
    4. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    5. Cason, Timothy N. & Uhlaner, Robert T., 1991. "Agricultural production's impact on water and energy demand: A choice modeling approach," Resources and Energy, Elsevier, vol. 13(4), pages 307-321, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mallawaarachchi, Thilak & Rayment, George & Cook, Freeman & Grundy, Mike, 2001. "Externalities in cane production and environmental best practice," 2001 Conference (45th), January 23-25, 2001, Adelaide, Australia 125765, Australian Agricultural and Resource Economics Society.
    2. Suresh Kumar, D., 2008. "Promoting drip irrigation where and why?," Conference Papers h042349, International Water Management Institute.
    3. Mallawaarachchi, Thilak, 2002. "Assessing Best-Practice Environmental Management Options at the decision scale: a model for technology choice and policy analysis," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125136, Australian Agricultural and Resource Economics Society.
    4. Mushtaq, S. & Maraseni, T.N. & Reardon-Smith, K., 2013. "Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology," Agricultural Systems, Elsevier, vol. 117(C), pages 78-89.
    5. M. Qureshi & S. Qureshi & K. Bajracharya & M. Kirby, 2008. "Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 321-341, March.
    6. Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
    7. Kumar, D. Suresh, 2012. "Adoption of Drip Irrigation System in India: Some Experience and Evidence," Bangladesh Development Studies, Bangladesh Institute of Development Studies (BIDS), vol. 35(1), pages 61-78, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qureshi, Muhammad Ejaz & Arunakumaren, J. & Bajracharya, K. & Wegener, Malcolm K. & Qureshi, S.E. & Bristow, Keith L., 2002. "Economic and environmental impacts of groundwater management scenarios in Burdekin Delta," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125148, Australian Agricultural and Resource Economics Society.
    2. Schuck, Eric C. & Green, Gareth P., 2002. "Farm Level Irrigation Technology Decisions Over Time," 2002 Annual meeting, July 28-31, Long Beach, CA 19632, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Green, Gareth P. & Sunding, David L., 1997. "Land Allocation, Soil Quality, And The Demand For Irrigation Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-9, December.
    4. Alcon, Francisco & De Miguel, María Dolores & Burton, Michael P., 2008. "Adopción de tecnología de distribución y control del agua en las Comunidades de Regantes de la Región de Murcia," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 8(01), pages 1-19.
    5. Hernandez, J.C. & Tornos, P. & Cuervo, U.Y. & Furet, N.R. & Orihuela, D.L., 2012. "Influence Of Hydrogen Peroxide (H2o2) In The Fruit Of Pepper (Capsicumannuum L.)," 48th Annual Meeting, May 20-26th, 2012, Playa del Carmen, Mexico 253713, Caribbean Food Crops Society.
    6. World Bank, 2001. "India : Power Supply to Agriculture, Volume 1. Summary Report," World Bank Publications - Reports 15288, The World Bank Group.
    7. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    8. Gadissa, Takele & Chemeda, Desalegn, 2009. "Effects of drip irrigation levels and planting methods on yield and yield components of green pepper (Capsicum annuum, L.) in Bako, Ethiopia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1673-1678, November.
    9. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    10. Mallawaarachchi, Thilak & Quiggin, John C., 2001. "Modelling socially optimal land allocations for sugar cane growing in North Queensland: a linked mathematical programming and choice modelling study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(3), pages 1-27.
    11. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    12. Kampas, Athanasios & Petsakos, Athanasios & Rozakis, Stelios, 2012. "Price induced irrigation water saving: Unraveling conflicts and synergies between European agricultural and water policies for a Greek Water District," Agricultural Systems, Elsevier, vol. 113(C), pages 28-38.
    13. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    14. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    15. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    16. Mallawaarachchi, T. & Walker, P. A. & Young, M. D. & Smyth, R. E. & Lynch, H. S. & Dudgeon, G., 1996. "GIS-based integrated modelling systems for natural resource management," Agricultural Systems, Elsevier, vol. 50(2), pages 169-189.
    17. Mallawaarachchi, Thilak, 2002. "Assessing Best-Practice Environmental Management Options at the decision scale: a model for technology choice and policy analysis," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125136, Australian Agricultural and Resource Economics Society.
    18. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    19. Unknown, 1997. "A New Soil Conservation Methodology and Application to Cropping Systems in Tropical Steeplands: A comparative synthesis of results obtained in ACIAR Project PN 9201," Technical Reports 113906, Australian Centre for International Agricultural Research.
    20. Meinke, H. & Baethgen, W. E. & Carberry, P. S. & Donatelli, M. & Hammer, G. L. & Selvaraju, R. & Stockle, C. O., 2001. "Increasing profits and reducing risks in crop production using participatory systems simulation approaches," Agricultural Systems, Elsevier, vol. 70(2-3), pages 493-513.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aare01:125867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.