IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1769-d952802.html
   My bibliography  Save this article

Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area

Author

Listed:
  • Yunfeng Li

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Quanqing Feng

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Dongwei Li

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Mingfa Li

    (Xinjiang Production and Construction Corps First Division Water Saving and Irrigation Test Station, Alaer 843300, China)

  • Huifeng Ning

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Qisheng Han

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Abdoul Kader Mounkaila Hamani

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China
    Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yang Gao

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

  • Jingsheng Sun

    (Key Open Laboratory of Crop Water Requirement and Regulation, Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China)

Abstract

Crop models are valuable tools for exploring the responses of crops to changes in environmental factors, and have been widely used to analyze the response of crops to varying soil water content and salinity levels in extreme drought and high salinity conditions. To obtain suitable water-salt thresholds and the total irrigation amount for cotton in the arid oasis of southern Xinjiang, the AquaCrop model was calibrated and validated using measured data from 2020 and 2021 (total irrigation amount: 255–480 mm; initial soil salinity levels: 0.2–0.6%). With the same initial soil water content, when the initial soil salinity < 7 dS/m, cotton yield did not significantly change under different levels of total irrigation amount, while when the initial soil salinity was 10 dS/m, there was a significant difference in cotton yield with a total irrigation amount > 300 mm. The total irrigation amount of 375 mm is the threshold for cotton at the low-salinity treatment, while it increases to 450 mm at the high-salinity treatment. Based on cotton performance with the AquaCrop model, the threshold values of soil salinity were 7, 9.3, 8.2 and 9.3 dS/m ( EC e ) during the cotton stage of seedling, squaring, flower-boll and maturity, respectively. The total irrigation amount of 450 to 500 mm could achieve a win-win scenario for both cotton yield and water use efficiency under sandy loam soil. In summary, this study can serve as a reference for regulating water and salt in arid saline-alkali regions.

Suggested Citation

  • Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1769-:d:952802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    4. Hassanli, Mohammad & Ebrahimian, Hamed & Mohammadi, Ehsan & Rahimi, Amirreza & Shokouhi, Amirhossein, 2016. "Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models," Agricultural Water Management, Elsevier, vol. 176(C), pages 91-99.
    5. Jalil, Atiqurrahman & Akhtar, Fazlullah & Awan, Usman Khalid, 2020. "Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    7. Ma, Kai & Wang, Zhenhua & Li, Haiqiang & Wang, Tianyu & Chen, Rui, 2022. "Effects of nitrogen application and brackish water irrigation on yield and quality of cotton," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    9. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    10. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    11. Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
    12. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    13. Che, Zheng & Wang, Jun & Li, Jiusheng, 2021. "Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 247(C).
    14. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    16. Hunsaker, D.J. & Bronson, K.F., 2021. "FAO56 crop and water stress coefficients for cotton using subsurface drip irrigation in an arid US climate," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Zhou, Beibei & Yang, Lu & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Liang, Chaofan, 2021. "Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang," Agricultural Water Management, Elsevier, vol. 248(C).
    18. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    19. Devkota, Krishna Prasad & Devkota, Mina & Rezaei, Meisam & Oosterbaan, Roland, 2022. "Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands," Agricultural Systems, Elsevier, vol. 198(C).
    20. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    21. Li, Meng & Du, Yingji & Zhang, Fucang & Bai, Yungang & Fan, Junliang & Zhang, Jianghui & Chen, Shaoming, 2019. "Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model," Agricultural Water Management, Elsevier, vol. 218(C), pages 124-138.
    22. Tan, Shuai & Wang, Quanjiu & Zhang, Jihong & Chen, Yong & Shan, Yuyang & Xu, Di, 2018. "Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 196(C), pages 99-113.
    23. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    6. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    7. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Yu, Qihua & Kang, Shaozhong & Zhang, Lu & Hu, Shunjun & Li, Yunfeng & Parsons, David, 2023. "Incorporating new functions into the WAVES model, to better simulate cotton production under film mulching and severe salinity," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Delorit, Justin D. & Parker, Dominic P. & Block, Paul J., 2019. "An agro-economic approach to framing perennial farm-scale water resources demand management for water rights markets," Agricultural Water Management, Elsevier, vol. 218(C), pages 68-81.
    11. Abi Saab, Marie Therese & Todorovic, Mladen & Albrizio, Rossella, 2015. "Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models?," Agricultural Water Management, Elsevier, vol. 147(C), pages 21-33.
    12. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    14. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    15. Richwell Mubita Mwiya & Zhanyu Zhang & Chengxin Zheng & Ce Wang, 2020. "Comparison of Approaches for Irrigation Scheduling Using AquaCrop and NSGA-III Models under Climate Uncertainty," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    16. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    17. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    18. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    19. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Wu, Hui & Yue, Qiong & Guo, Ping & Xu, Xiaoyu & Huang, Xi, 2022. "Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules," Agricultural Water Management, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1769-:d:952802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.