IDEAS home Printed from https://ideas.repec.org/p/ags/saea17/252856.html
   My bibliography  Save this paper

Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector

Author

Listed:
  • Gautam, Tej K.
  • Bhatta, Dependra

Abstract

The factors considered in using irrigation as a production strategy in Nepal has been different from many countries mainly because of geographical diversity, water availability and investment constraint. This paper identifies the factors affecting irrigation technology adoption among the farmers in Nepal using household survey data 2011. We use a multinomial logit model to estimate variables affecting multiple irrigation technology (tube-well, canal and pond) adoptions in which sociodemographic information, land holding, access to credit, and geographical factors are major explanatory variables. Preliminary results show that education, land holding size, access to credit, and geographic factors have a higher impact on tube-well irrigation technology adoption. Additionally, productivity of major crops found to increase substantially in irrigated land. The impact of shallow tube-well is much greater in plain compared to other modes of irrigation in plain and hilly regions. Findings from this study should provide insights to producers and policy makers in identifying opportunities for utilizing and investing in more efficient irrigation technology

Suggested Citation

  • Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
  • Handle: RePEc:ags:saea17:252856
    DOI: 10.22004/ag.econ.252856
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/252856/files/NPL_Irrigation.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.252856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miranowski, John & Shortle, J., 1986. "Effects of Risk Perceptions and Other Characteristics of Farmers and Farm Operations on the Adoption of Conservation Tillage Practices," Staff General Research Papers Archive 10703, Iowa State University, Department of Economics.
    2. Dinar, Ariel & Yaron, Dan, 1990. "Influence Of Quality And Scarcity Of Inputs On The Adoption Of Modern Irrigation Technologies," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-10, December.
    3. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, Blackwell, vol. 6(4), pages 315-332, April.
    4. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    5. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    6. Fuglie, Keith O., 1999. "Conservation Tillage and Pesticide Use in the Cornbelt," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 31(1), pages 133-147, April.
    7. Ariel Dinar & Dan Yaron, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 6(4), pages 315-332, April.
    8. Dinar, Ariel & Zilberman, David, 1991. "The economics of resource-conservation, pollution-reduction technology selection: The case of irrigation water," Resources and Energy, Elsevier, vol. 13(4), pages 323-348, December.
    9. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    10. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    11. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    12. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    13. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    14. Cason, Timothy N. & Uhlaner, Robert T., 1991. "Agricultural production's impact on water and energy demand: A choice modeling approach," Resources and Energy, Elsevier, vol. 13(4), pages 307-321, December.
    15. Clay, Daniel & Reardon, Thomas & Kangasniemi, Jaakko, 1998. "Sustainable Intensification in the Highland Tropics: Rwandan Farmers' Investments in Land Conservation and Soil Fertility," Economic Development and Cultural Change, University of Chicago Press, vol. 46(2), pages 351-377, January.
    16. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    2. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    3. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    4. Koundouri, Phoebe & Nauges, Céline & Tzouvelekas, Vangelis, 2009. "The Effect of Production Uncertainty and Information Dissemination of the Diffusion of Irrigation Technologies," TSE Working Papers 09-032, Toulouse School of Economics (TSE).
    5. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    6. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    7. Jian Shi & JunJie Wu & Beau Olen, 2022. "Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 387-406, May.
    8. Lionel Richefort & Jean-Louis Fusillier, 2010. "Imitation, rationalité et adoption de technologies d'irrigation améliorées à l'île de la Réunion," Economie & Prévision, La Documentation Française, vol. 0(2), pages 59-73.
    9. Alcon, Francisco & De Miguel, María Dolores & Burton, Michael P., 2008. "Adopción de tecnología de distribución y control del agua en las Comunidades de Regantes de la Región de Murcia," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 8(01), pages 1-19.
    10. Rossi, Fabiana Ribeiro & Filho, Hildo Meirelles de Souza & Miranda, Bruno Varella & Carrer, Marcelo José, 2020. "The role of contracts in the adoption of irrigation by Brazilian orange growers," Agricultural Water Management, Elsevier, vol. 233(C).
    11. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    12. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    13. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    14. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    15. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    16. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.
    17. Konstantinos Chatzimichael & Dimitris Christopoulos & Spiro Stefanou & Vangelis Tzouvelekas, 2020. "Irrigation practices, water effectiveness and productivity measurement [Toward an understanding of technology adoption: risk, learning, and neighborhood effects]," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 467-498.
    18. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    19. Lichtenberg, Erik & Majsztrik, John & Saavoss, Monica, 2014. "Willingness to Pay for Sensor-Controlled Irrigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168211, Agricultural and Applied Economics Association.
    20. Konstantinos Chatzimichael & Dimitris Christopoulos & Spyro Stefanou & Vangelis Tzouvelekas, 2015. "Irrigation Technology Adoption, Water Effectiveness and Productivity Measurement," Working Papers 1506, University of Crete, Department of Economics.

    More about this item

    Keywords

    Crop Production/Industries; Production Economics; Resource /Energy Economics and Policy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:saea17:252856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.