IDEAS home Printed from https://ideas.repec.org/p/ags/aaea22/335586.html
   My bibliography  Save this paper

Cover Crop Adoption and Climate Risks: An Application of Causal Random Forests

Author

Listed:
  • Quigley, David T.
  • Che, Yuyuan
  • Yasar, Mahmut
  • Rejesus, Roderick M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Quigley, David T. & Che, Yuyuan & Yasar, Mahmut & Rejesus, Roderick M., 2023. "Cover Crop Adoption and Climate Risks: An Application of Causal Random Forests," 2023 Annual Meeting, July 23-25, Washington D.C. 335586, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea22:335586
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/335586/files/25617.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    3. Jacob, Daniel, 2021. "CATE meets ML: Conditional average treatment effect and machine learning," IRTG 1792 Discussion Papers 2021-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Fengxia Dong, 2022. "Cover Crops, Drought, Yield and Risk: an Analysis of U.S. Soybean Production," NBER Working Papers 30122, National Bureau of Economic Research, Inc.
    5. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    6. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    7. Anthony Strittmatter, 2018. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," Papers 1812.06533, arXiv.org, revised Dec 2021.
    8. Daniel Jacob, 2021. "CATE meets ML," Digital Finance, Springer, vol. 3(2), pages 99-148, June.
    9. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    10. Benedikte Bjerge & Neda Trifkovic, 2018. "Extreme weather and demand for index insurance in rural India," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(3), pages 397-431.
    11. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2016. "Impacts of climate change on agriculture: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 76(C), pages 105-124.
    12. Carolyn Kousky, 2017. "Disasters as Learning Experiences or Disasters as Policy Opportunities? Examining Flood Insurance Purchases after Hurricanes," Risk Analysis, John Wiley & Sons, vol. 37(3), pages 517-530, March.
    13. Shackelford, Gorm E. & Kelsey, Rodd & Dicks, Lynn V., 2019. "Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean," Land Use Policy, Elsevier, vol. 88(C).
    14. Yoder, Landon & Houser, Matthew & Bruce, Analena & Sullivan, Abigail & Farmer, James, 2021. "Are climate risks encouraging cover crop adoption among farmers in the southern Wabash River Basin?," Land Use Policy, Elsevier, vol. 102(C).
    15. Daniel Jacob, 2021. "CATE meets ML -- The Conditional Average Treatment Effect and Machine Learning," Papers 2104.09935, arXiv.org, revised Apr 2021.
    16. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    17. Cai, Jing & Song, Changcheng, 2017. "Do disaster experience and knowledge affect insurance take-up decisions?," Journal of Development Economics, Elsevier, vol. 124(C), pages 83-94.
    18. Anthony Louis D'Agostino & Wolfram Schlenker, 2016. "Recent weather fluctuations and agricultural yields: implications for climate change," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 159-171, November.
    19. Fengxia Dong, 2022. "Cover Crops, Drought, Yield, and Risk: An Analysis of US Soybean Production," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 241-267, National Bureau of Economic Research, Inc.
    20. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    21. Yuyuan Che & Hongli Feng & David A. Hennessy, 2020. "Recency effects and participation at the extensive and intensive margins in the U.S. Federal Crop Insurance Program," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(1), pages 52-85, January.
    22. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    2. Olga Takács & János Vincze, 2023. "Heterogeneous wage structure effects: a partial European East-West comparison," CERS-IE WORKING PAPERS 2305, Institute of Economics, Centre for Economic and Regional Studies.
    3. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    4. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
    5. Harsh Parikh & Carlos Varjao & Louise Xu & Eric Tchetgen Tchetgen, 2022. "Validating Causal Inference Methods," Papers 2202.04208, arXiv.org, revised Jul 2022.
    6. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).
    7. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    8. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    9. Verhagen, Mark D., 2023. "Using machine learning to monitor the equity of large-scale policy interventions: The Dutch decentralisation of the Social Domain," SocArXiv qzm7y, Center for Open Science.
    10. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    12. Noah Miller & Jesse Tack & Jason Bergtold, 2021. "The Impacts of Warming Temperatures on US Sorghum Yields and the Potential for Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1742-1758, October.
    13. Paul B. Ellickson & Wreetabrata Kar & James C. Reeder, 2023. "Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions," Marketing Science, INFORMS, vol. 42(4), pages 704-728, July.
    14. Gabriel Okasa & Kenneth A. Younge, 2022. "Sample Fit Reliability," Papers 2209.06631, arXiv.org.
    15. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    16. Netta Barak‐Corren & Yoav Kan‐Tor & Nelson Tebbe, 2022. "Examining the effects of antidiscrimination laws on children in the foster care and adoption systems," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1003-1066, December.
    17. Hu, Haiqing & Wei, Wei & Chang, Chun-Ping, 2022. "Examining the impact of extreme temperature on green innovation in China: Evidence from city-level data," Energy Economics, Elsevier, vol. 114(C).
    18. Uguccioni, James, 2022. "The long-run effects of parental unemployment in childhood," CLEF Working Paper Series 45, Canadian Labour Economics Forum (CLEF), University of Waterloo.
    19. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).

    More about this item

    Keywords

    Productivity Analysis; Risk and Uncertainty; Production Economics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea22:335586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.