IDEAS home Printed from https://ideas.repec.org/p/ags/aaea15/205733.html
   My bibliography  Save this paper

A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model

Author

Listed:
  • Yuan, Yuan
  • You, Wen
  • Boyle, Kevin J.

Abstract

Unobserved heterogeneity is popularly modelled using the mixed logit model, so called because it is a mixture of standard conditional logit models. Although the mixed logit model can, in theory, approximate any random utility model with an appropriate mixing distribution, there is little guidance on how to select such a distribution. This study contributes to suggestions on distribution selection by describing the heterogeneity features which can be captured by established parametric mixing distributions and more recently introduced nonparametric mixing distributions, both of a discrete and continuous nature. We provide empirical illustrations of each feature in turn using simple mixing distributions which focus on the feature at hand.

Suggested Citation

  • Yuan, Yuan & You, Wen & Boyle, Kevin J., 2015. "A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205733, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea15:205733
    DOI: 10.22004/ag.econ.205733
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/205733/files/paper.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.205733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hess, S. & Bierlaire, Michel & Polak, J.W., 2007. "A systematic comparison of continuous and discrete mixture models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 35-61.
    2. Danny Campbell & Suzanne Elizabeth Vedel & Bo Jellesmark Thorsen & Jette Bredahl Jacobsen, 2014. "Heterogeneity in the WTP for recreational access: distributional aspects," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(8), pages 1200-1219, August.
    3. Alvin E. Roth, 2007. "Repugnance as a Constraint on Markets," Journal of Economic Perspectives, American Economic Association, vol. 21(3), pages 37-58, Summer.
    4. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    6. Campbell, Danny & Doherty, Edel & Hynes, Stephen & van Rensburg, Tom M., 2010. "Combining discrete and continuous mixing approaches to accommodate heterogeneity in price sensitivities in environmental choice analysis," 84th Annual Conference, March 29-31, 2010, Edinburgh, Scotland 91723, Agricultural Economics Society.
    7. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    8. Daniele Pacifico, 2013. "On the role of unobserved preference heterogeneity in discrete choice models of labour supply," Empirical Economics, Springer, vol. 45(2), pages 929-963, October.
    9. Mogens Fosgerau, 2014. "Nonparametric approaches to describing heterogeneity," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 11, pages 257-267, Edward Elgar Publishing.
    10. Patrick Bajari & Jeremy T. Fox & Stephen P. Ryan, 2007. "Linear Regression Estimation of Discrete Choice Models with Nonparametric Distributions of Random Coefficients," American Economic Review, American Economic Association, vol. 97(2), pages 459-463, May.
    11. Arunotayanun, Kriangkrai & Polak, John W., 2011. "Taste heterogeneity and market segmentation in freight shippers' mode choice behaviour," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 138-148, March.
    12. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    13. Danny Campbell & Edel Doherty, 2013. "Combining discrete and continuous mixing distributions to identify niche markets for food," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(2), pages 287-312, March.
    14. Edward Morey & Jennifer Thacher & William Breffle, 2006. "Using Angler Characteristics and Attitudinal Data to Identify Environmental Preference Classes: A Latent-Class Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 34(1), pages 91-115, May.
    15. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    16. Andrew Daly & Stephane Hess & Kenneth Train, 2012. "Assuring finite moments for willingness to pay in random coefficient models," Transportation, Springer, vol. 39(1), pages 19-31, January.
    17. Cherchi, Elisabetta & Guevara, Cristian Angelo, 2012. "A Monte Carlo experiment to analyze the curse of dimensionality in estimating random coefficients models with a full variance–covariance matrix," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 321-332.
    18. Dan Rigby & Kelvin Balcombe & Michael Burton, 2009. "Mixed Logit Model Performance and Distributional Assumptions: Preferences and GM foods," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 279-295, March.
    19. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    20. Balcombe, Kelvin & Burton, Michael & Rigby, Dan, 2011. "Skew and attribute non-attendance within the Bayesian mixed logit model," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 446-461.
    21. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
    22. Fosgerau, Mogens & Hess, Stephane, 2009. "A comparison of methods for representing random taste heterogeneity in discrete choice models," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 42, pages 1-25.
    23. Rouwendal, Jan & de Blaeij, Arianne & Rietveld, Piet & Verhoef, Erik, 2010. "The information content of a stated choice experiment: A new method and its application to the value of a statistical life," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 136-151, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    2. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    3. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    4. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    5. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    6. Georges Sfeir & Filipe Rodrigues & Maya Abou-Zeid, 2021. "Gaussian Process Latent Class Choice Models," Papers 2101.12252, arXiv.org.
    7. Fowri, Hamid R. & Seyedabrishami, Seyedehsan, 2020. "Assessment of urban transportation pricing policies with incorporation of unobserved heterogeneity," Transport Policy, Elsevier, vol. 99(C), pages 12-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    2. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.
    3. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    4. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    5. Varela, Elsa & Jacobsen, Jette Bredahl & Soliño, Mario, 2014. "Understanding the heterogeneity of social preferences for fire prevention management," Ecological Economics, Elsevier, vol. 106(C), pages 91-104.
    6. Bazzani, Claudia & Palma, Marco A. & Nayga, Rodolfo M., Jr., 2018. "On the use of flexible mixing distributions in WTP space: an induced value choice experiment," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), April.
    7. Bansal, Prateek & Daziano, Ricardo A & Guerra, Erick, 2018. "Minorization-Maximization (MM) algorithms for semiparametric logit models: Bottlenecks, extensions, and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 17-40.
    8. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    9. Bansal, Prateek & Hurtubia, Ricardo & Tirachini, Alejandro & Daziano, Ricardo A., 2019. "Flexible estimates of heterogeneity in crowding valuation in the New York City subway," Journal of choice modelling, Elsevier, vol. 31(C), pages 124-140.
    10. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    11. Rico Krueger & Taha H. Rashidi & Akshay Vij, 2019. "Semi-Parametric Hierarchical Bayes Estimates of New Yorkers' Willingness to Pay for Features of Shared Automated Vehicle Services," Papers 1907.09639, arXiv.org.
    12. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    13. Doherty, Edel & Campbell, Danny & Hynes, Stephen, 2012. "Exploring cost heterogeneity in recreational demand," Working Papers 148832, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    14. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2017. "A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality," Working Papers in Economics 17/23, University of Waikato.
    15. Danaf, Mazen & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Logit mixture with inter and intra-consumer heterogeneity and flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 35(C).
    16. Campbell, Danny & Hensher, David A. & Scarpa, Riccardo, 2014. "Bounding WTP distributions to reflect the ‘actual’ consideration set," Journal of choice modelling, Elsevier, vol. 11(C), pages 4-15.
    17. Catalina M. Torres & Sergio Colombo & Nick Hanley, 2014. "Incorrectly accounting for preference heterogeneity in choice experiments: what are the implications for welfare measurement?," DEA Working Papers 65, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    18. Caputo, Vincenzina & Scarpa, Riccardo & Nayga, Rodolfo M. & Ortega, David L., 2018. "Are preferences for food quality attributes really normally distributed? An analysis using flexible mixing distributions," Journal of choice modelling, Elsevier, vol. 28(C), pages 10-27.
    19. Youssef M Aboutaleb & Mazen Danaf & Yifei Xie & Moshe Ben-Akiva, 2020. "Sparse Covariance Estimation in Logit Mixture Models," Papers 2001.05034, arXiv.org.
    20. Edel Doherty & Danny Campbell & Stephen Hynes, 2013. "Models of Site-choice for Walks in Rural Ireland: Exploring Cost Heterogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(2), pages 446-466, June.

    More about this item

    Keywords

    Health Economics and Policy; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea15:205733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.