IDEAS home Printed from https://ideas.repec.org/a/zbw/kdijep/200835.html
   My bibliography  Save this article

Why Are Peak Loads Observed during Winter Months in Korea?

Author

Listed:
  • Kim, Jee Young
  • Oh, Hyungna
  • Choi, Kyung-Mee

Abstract

Since 2009, electricity consumption has developed a unique seasonal pattern in South Korea. Winter loads have sharply increased, and they eventually exceeded summer peaks. This trend reversal distinguishes these load patterns from those in the USA and the EU, where annual peaks are observed during the summer months. Using Levene's test, we show statistical evidence of a rise in temperature but a decrease in variance over time regardless of the season. Despite the overall increase in the temperature, regardless of the season there should be another cause of the increased demand for electricity in winter. With the present study using data from 1991 to 2012, we provide empirical evidence that relatively low electricity prices regulated by the government have contributed significantly to the rapid upward change in electricity consumption, specifically during the winter months in the commercial sector in Korea.

Suggested Citation

  • Kim, Jee Young & Oh, Hyungna & Choi, Kyung-Mee, 2019. "Why Are Peak Loads Observed during Winter Months in Korea?," KDI Journal of Economic Policy, Korea Development Institute (KDI), vol. 41(1), pages 43-58.
  • Handle: RePEc:zbw:kdijep:200835
    DOI: 10.23895/kdijep.2019.41.1.43
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/200835/1/kdi-jep-41-1-3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.23895/kdijep.2019.41.1.43?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mansur, Erin T. & Mendelsohn, Robert & Morrison, Wendy, 2008. "Climate change adaptation: A study of fuel choice and consumption in the US energy sector," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 175-193, March.
    2. Zarnikau, Jay, 2003. "Functional forms in energy demand modeling," Energy Economics, Elsevier, vol. 25(6), pages 603-613, November.
    3. Akihiro Otsuka, 2015. "Demand for industrial and commercial electricity: evidence from Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-11, December.
    4. Frank T. Denton & Dean C. Mountain & Byron G. Spencer, 2003. "Energy Demand with Declining Rate Schedules: An Econometric Model for the U.S. Commercial Sector," Land Economics, University of Wisconsin Press, vol. 79(1), pages 86-105.
    5. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    6. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
    7. Henley, Andrew & Peirson, John, 1998. "Residential energy demand and the interaction of price and temperature: British experimental evidence," Energy Economics, Elsevier, vol. 20(2), pages 157-171, April.
    8. Newell, Richard G. & Pizer, William A., 2008. "Carbon mitigation costs for the commercial building sector: Discrete-continuous choice analysis of multifuel energy demand," Resource and Energy Economics, Elsevier, vol. 30(4), pages 527-539, December.
    9. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    10. Eliza Lis & Christiane Nickel, 2010. "The impact of extreme weather events on budget balances," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 17(4), pages 378-399, August.
    11. Contreras, Sergio & Smith, Wm. Doyle & Fullerton, Thomas M., Jr., 2010. "U.S. commercial electricity consumption," MPRA Paper 34855, University Library of Munich, Germany, revised 22 May 2011.
    12. Harrison Fell & Dallas Burtraw & Richard Morgenstern & Karen Palmer, 2012. "Climate Policy Design with Correlated Uncertainties in Offset Supply and Abatement Cost," Land Economics, University of Wisconsin Press, vol. 88(3), pages 589-611.
    13. Madlener, Reinhard & Alt, Raimund, 1996. "Residential Energy Demand Analysis: An Empirical Application of the Closure Test Principle," Empirical Economics, Springer, vol. 21(2), pages 203-220.
    14. Bose, Ranjan Kumar & Shukla, Megha, 1999. "Elasticities of electricity demand in India," Energy Policy, Elsevier, vol. 27(3), pages 137-146, March.
    15. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    16. Yueming Qiu, 2014. "Energy Efficiency and Rebound Effects: An Econometric Analysis of Energy Demand in the Commercial Building Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 295-335, October.
    17. Silk, Julian I. & Joutz, Frederick L., 1997. "Short and long-run elasticities in US residential electricity demand: a co-integration approach," Energy Economics, Elsevier, vol. 19(4), pages 493-513, October.
    18. Kenneth B. Medlock III & Ronald Soligo, 2001. "Economic Development and End-Use Energy Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryu, Jun-Yeol & Kim, Dae-Wook & Kim, Man-Keun, 2021. "Household differentiation and residential electricity demand in Korea," Energy Economics, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2013. "Seasonal temperature variations and energy demand," Climatic Change, Springer, vol. 116(3), pages 805-825, February.
    2. Petrick, Sebastian & Rehdanz, Katrin & Tol, Richard S. J., 2010. "The impact of temperature changes on residential energy consumption," Kiel Working Papers 1618, Kiel Institute for the World Economy (IfW Kiel).
    3. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
    4. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Working Papers 2007.46, Fondazione Eni Enrico Mattei.
    5. Hung, Ming-Feng & Huang, Tai-Hsin, 2015. "Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing," Energy Economics, Elsevier, vol. 48(C), pages 168-177.
    6. Richard S. J. Tol & Sebastian Petrick & Katrin Rehdanz, 2012. "The Impact of Temperature Changes on Residential Energy Use," Working Paper Series 4412, Department of Economics, University of Sussex Business School.
    7. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    8. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    9. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    10. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Yueming Qiu, 2014. "Energy Efficiency and Rebound Effects: An Econometric Analysis of Energy Demand in the Commercial Building Sector," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 295-335, October.
    12. Wasantha Athukorala & Clevo Wilson, 2010. "Demand for electricity: evidence of cointegration and causality from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 258, School of Economics and Finance, Queensland University of Technology.
    13. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    14. Sun, Chuanwang & Lin, Boqiang, 2013. "Reforming residential electricity tariff in China: Block tariffs pricing approach," Energy Policy, Elsevier, vol. 60(C), pages 741-752.
    15. M.Adetunji BABATUNDE & M.Isa SHAUIBU, 2011. "The Demand for Residential Electricity in Nigeria," Pakistan Journal of Applied Economics, Applied Economics Research Centre, vol. 21, pages 1-13.
    16. Flores, Daniel & Luna, Edgar M., 2019. "An econometric evaluation of daylight saving time in Mexico," Energy, Elsevier, vol. 187(C).
    17. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    18. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    19. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    20. Muhammad Arshad Khan & Abdul Qayyum, 2009. "The demand for electricity in Pakistan," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 33(1), pages 70-96, March.

    More about this item

    Keywords

    Electricity Demand; Energy Demand; Commercial Sector; Price Elasticity;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kdijep:200835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/kdiiikr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.