IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v07y2016i04ns201000781650010x.html
   My bibliography  Save this article

Optimal Environmental Policies And Renewable Energy Investment: Evidence From The Texas Electricity Market

Author

Listed:
  • WICHSINEE WIBULPOLPRASERT

    (Thailand Development Research Institute, 565 Ramkhamhaeng 39, Wangthonglang, Bangkok 10310, Thailand)

Abstract

Renewable electricity subsidies have been popular policy instruments to combat climate change because of their ability to offset emissions. This paper studies the long-run welfare benefits of optimizing the design of the existing renewable energy subsidy (the status quo) in the presence of heterogeneity in the offset emissions. In particular, I measure the welfare gain from differentiating renewable subsidies across location and time to reflect the environmental benefits from emissions offset in the context of wind energy in the Texas electricity market. I find that the welfare gain from differentiation is small compared to the gain already achieved under the status quo subsidy. In contrast, the optimal emissions tax yields much larger welfare gain because it engages in other cost-effective emissions abatement channels that renewable energy subsidies do not: namely, demand conservation and cross-plant fuel substitution.

Suggested Citation

  • Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies And Renewable Energy Investment: Evidence From The Texas Electricity Market," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-41, November.
  • Handle: RePEc:wsi:ccexxx:v:07:y:2016:i:04:n:s201000781650010x
    DOI: 10.1142/S201000781650010X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S201000781650010X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S201000781650010X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2012. "Emissions savings from wind power generation: Evidence from Texas, California and the Upper Midwest," Working Papers 2012-03, Colorado School of Mines, Division of Economics and Business.
    2. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    3. Meredith Fowlie & Nicholas Muller, 2019. "Market-Based Emissions Regulation When Damages Vary across Sources: What Are the Gains from Differentiation?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(3), pages 593-632.
    4. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    5. Meredith Fowlie & Mar Reguant & Stephen P. Ryan, 2016. "Market-Based Emissions Regulation and Industry Dynamics," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 249-302.
    6. Paul, Anthony & Myers, Erica & Palmer, Karen, 2009. "A Partial Adjustment Model of U.S. Electricity Demand by Region, Season, and Sector," RFF Working Paper Series dp-08-50, Resources for the Future.
    7. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    8. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.
    9. Bushnell, James, 2010. "Building Blocks: Investment in Renewable and Non-Renewable Technologies," Staff General Research Papers Archive 31546, Iowa State University, Department of Economics.
    10. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    11. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    12. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    13. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    14. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    15. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    16. Fell, Harrison & Linn, Joshua & Munnings, Clayton, 2012. "Designing Renewable Electricity Policies to Reduce Emissions," RFF Working Paper Series dp-12-54, Resources for the Future.
    17. Joseph Cullen, 2013. "Measuring the Environmental Benefits of Wind-Generated Electricity," American Economic Journal: Economic Policy, American Economic Association, vol. 5(4), pages 107-133, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsagr, Naif, 2023. "How environmental policy stringency affects renewable energy investment? Implications for green investment horizons," Utilities Policy, Elsevier, vol. 83(C).
    2. Jan Abrell & Mirjam Kosch & Sebastian Rausch, 2017. "The Economic Cost of Carbon Abatement with Renewable Energy Policies," CER-ETH Economics working paper series 17/273, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    4. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    5. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    6. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "Buffering volatility: Storage investments and technology-specific renewable energy support," Energy Economics, Elsevier, vol. 84(S1).
    7. Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2022. "The Economic and Climate Value of Flexibility in Green Energy Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 289-312, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wichsinee Wibulpolprasert, 2016. "Optimal Environmental Policies and Renewable Energy Investment in Electricity Markets," PIER Discussion Papers 47, Puey Ungphakorn Institute for Economic Research.
    2. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    3. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    4. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    5. Wiser, Ryan & Millstein, Dev & Mai, Trieu & Macknick, Jordan & Carpenter, Alberta & Cohen, Stuart & Cole, Wesley & Frew, Bethany & Heath, Garvin, 2016. "The environmental and public health benefits of achieving high penetrations of solar energy in the United States," Energy, Elsevier, vol. 113(C), pages 472-486.
    6. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    7. Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories," Energy Economics, Elsevier, vol. 49(C), pages 182-191.
    8. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    9. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    10. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    11. Csereklyei, Zsuzsanna, 2020. "Price and income elasticities of residential and industrial electricity demand in the European Union," Energy Policy, Elsevier, vol. 137(C).
    12. Grant Jacobsen, 2016. "Improving Energy Codes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    14. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    15. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    16. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    18. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    19. Li, Haoyang & Lin, Wen, 2023. "Cheaper solar, cleaner grid?," Energy Economics, Elsevier, vol. 127(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:07:y:2016:i:04:n:s201000781650010x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.