IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i5p1003-1017.html
   My bibliography  Save this article

Integrating Risk Assessment and Life Cycle Assessment: A Case Study of Insulation

Author

Listed:
  • Yurika Nishioka
  • Jonathan I. Levy
  • Gregory A. Norris
  • Andrew Wilson
  • Patrick Hofstetter
  • John D. Spengler

Abstract

Increasing residential insulation can decrease energy consumption and provide public health benefits, given changes in emissions from fuel combustion, but also has cost implications and ancillary risks and benefits. Risk assessment or life cycle assessment can be used to calculate the net impacts and determine whether more stringent energy codes or other conservation policies would be warranted, but few analyses have combined the critical elements of both methodologies. In this article, we present the first portion of a combined analysis, with the goal of estimating the net public health impacts of increasing residential insulation for new housing from current practice to the latest International Energy Conservation Code (IECC 2000). We model state‐by‐state residential energy savings and evaluate particulate matter less than 2.5 μm in diameter (PM2.5, NOx, and SO2 emission reductions. We use past dispersion modeling results to estimate reductions in exposure, and we apply concentration‐response functions for premature mortality and selected morbidity outcomes using current epidemiological knowledge of effects of PM2.5 (primary and secondary). We find that an insulation policy shift would save 3 × 1014 British thermal units or BTU (3 × 1017 J) over a 10‐year period, resulting in reduced emissions of 1,000 tons of PM2.5, 30,000 tons of NOx, and 40,000 tons of SO2. These emission reductions yield an estimated 60 fewer fatalities during this period, with the geographic distribution of health benefits differing from the distribution of energy savings because of differences in energy sources, population patterns, and meteorology. We discuss the methodology to be used to integrate life cycle calculations, which can ultimately yield estimates that can be compared with costs to determine the influence of external costs on benefit‐cost calculations.

Suggested Citation

  • Yurika Nishioka & Jonathan I. Levy & Gregory A. Norris & Andrew Wilson & Patrick Hofstetter & John D. Spengler, 2002. "Integrating Risk Assessment and Life Cycle Assessment: A Case Study of Insulation," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 1003-1017, October.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:1003-1017
    DOI: 10.1111/1539-6924.00266
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00266
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Whittemore, A.S. & Korn, E.L., 1980. "Asthma and air pollution in the Los Angeles area," American Journal of Public Health, American Public Health Association, vol. 70(7), pages 687-696.
    2. Reddy, B. Sudhakara & Parikh, Jyoti K, 1997. "Economic and environmental impacts of demand side management programmes," Energy Policy, Elsevier, vol. 25(3), pages 349-356, February.
    3. James K. Hammitt & Eric S. Belsky & Jonathan I. Levy & John D. Graham, 1999. "Residential Building Codes, Affordability, and Health Protection: A Risk‐Tradeoff Approach," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1037-1058, December.
    4. Ostro, Bart D., 1987. "Air pollution and morbidity revisited: A specification test," Journal of Environmental Economics and Management, Elsevier, vol. 14(1), pages 87-98, March.
    5. Jonathan I. Levy & Scott K. Wolff & John S. Evans, 2002. "A Regression‐Based Approach for Estimating Primary and Secondary Particulate Matter Intake Fractions," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 895-904, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badr Moutik & John Summerscales & Jasper Graham-Jones & Richard Pemberton, 2023. "Life Cycle Assessment Research Trends and Implications: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(18), pages 1-45, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostro, Bart, 1994. "Estimating the health effects of air pollutants : a method with an application to Jakarta," Policy Research Working Paper Series 1301, The World Bank.
    2. Rowe, Robert D. & Lang, Carolyn M. & Chestnut, Lauraine G., 1996. "Critical factors in computing externalities for electricity resources," Resource and Energy Economics, Elsevier, vol. 18(4), pages 363-394, December.
    3. McCubbin, Donald R. & Delucchi, Mark A., 1996. "The Social Cost of the Health Effects of Motor-Vehicle Air Pollution," University of California Transportation Center, Working Papers qt5jm6d2tc, University of California Transportation Center.
    4. Sergey PALTSEV & John REILLY & Trent YANG, 2010. "Air Pollution Health Effects: Toward an Integrated Assessment," EcoMod2004 330600109, EcoMod.
    5. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    6. Kaiser, Mark J. & Pulsipher, Allan G. & Baumann, Robert H., 2004. "The potential economic and environmental impact of a Public Benefit Fund in Louisiana," Energy Policy, Elsevier, vol. 32(2), pages 191-206, January.
    7. Kahn, Matthew E., 1997. "Particulate pollution trends in the United States," Regional Science and Urban Economics, Elsevier, vol. 27(1), pages 87-107, February.
    8. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    9. Blackman, Allen & Chandru, Santosh & Mendoza-Domínguez, Alberto & Russell, A.G., 2012. "Health impacts of power-exporting plants in northern Mexico," Energy Policy, Elsevier, vol. 44(C), pages 34-45.
    10. Garg, Amit, 2011. "Pro-equity Effects of Ancillary Benefits of Climate Change Policies: A Case Study of Human Health Impacts of Outdoor Air Pollution in New Delhi," World Development, Elsevier, vol. 39(6), pages 1002-1025, June.
    11. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    12. Mojtaba Jorli & Steven Van Passel & Hossein Sadeghi & Alireza Nasseri & Lotfali Agheli, 2017. "Estimating Human Health Impacts and Costs Due to Iranian Fossil Fuel Power Plant Emissions through the Impact Pathway Approach," Energies, MDPI, vol. 10(12), pages 1-29, December.
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. María Xosé Vázquez & Jorge E. Araña & Carmelo J. León, 2006. "Economic evaluation of health effects with preference imprecision," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 403-417, April.
    15. Sepulveda, Facundo, 2014. "Air Pollution And Sick Leaves: The Child Health Link," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 55(2), pages 109-120, December.
    16. Adam Behrendt & Vineet M. Payyappalli & Jun Zhuang, 2019. "Modeling the Cost Effectiveness of Fire Protection Resource Allocation in the United States: Models and a 1980–2014 Case Study," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1358-1381, June.
    17. John Balbus & Jeffery Greenblatt & Ramya Chari & Dev Millstein & Kristie Ebi, 2014. "A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States," Climatic Change, Springer, vol. 127(2), pages 199-210, November.
    18. Samakovlis, Eva & Huhtala, Anni & Bellander, Tom & Svartengren, Magnus, 2005. "Valuing health effects of air pollution--Focus on concentration-response functions," Journal of Urban Economics, Elsevier, vol. 58(2), pages 230-249, September.
    19. Hongying Dai & Brian R. Lee & Jianqiang Hao, 2017. "Predicting Asthma Prevalence by Linking Social Media Data and Traditional Surveys," The ANNALS of the American Academy of Political and Social Science, , vol. 669(1), pages 75-92, January.
    20. Anett Hansen & Harald Selte, 2000. "Air Pollution and Sick-leaves," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(1), pages 31-50, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:1003-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.