IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v16y2007i1p37-56.html
   My bibliography  Save this article

Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis

Author

Listed:
  • Nicola J. Cooper
  • Paul C. Lambert
  • Keith R. Abrams
  • Alexander J. Sutton

Abstract

This article focuses on the modelling and prediction of costs due to disease accrued over time, to inform the planning of future services and budgets. It is well documented that the modelling of cost data is often problematic due to the distribution of such data; for example, strongly right skewed with a significant percentage of zero‐cost observations. An additional problem associated with modelling costs over time is that cost observations measured on the same individual at different time points will usually be correlated. In this study we compare the performance of four different multilevel/hierarchical models (which allow for both the within‐subject and between‐subject variability) for analysing healthcare costs in a cohort of individuals with early inflammatory polyarthritis (IP) who were followed‐up annually over a 5‐year time period from 1990/1991. The hierarchical models fitted included linear regression models and two‐part models with log‐transformed costs, and two‐part model with gamma regression and a log link. The cohort was split into a learning sample, to fit the different models, and a test sample to assess the predictive ability of these models. To obtain predicted costs on the original cost scale (rather than the log‐cost scale) two different retransformation factors were applied. All analyses were carried out using Bayesian Markov chain Monte Carlo (MCMC) simulation methods. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Nicola J. Cooper & Paul C. Lambert & Keith R. Abrams & Alexander J. Sutton, 2007. "Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis," Health Economics, John Wiley & Sons, Ltd., vol. 16(1), pages 37-56, January.
  • Handle: RePEc:wly:hlthec:v:16:y:2007:i:1:p:37-56
    DOI: 10.1002/hec.1141
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.1141
    Download Restriction: no

    File URL: https://libkey.io/10.1002/hec.1141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Han C. & Carlin B. P., 2001. "Markov Chain Monte Carlo Methods for Computing Bayes Factors: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1122-1132, September.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Manning, Willard G., 1998. "The logged dependent variable, heteroscedasticity, and the retransformation problem," Journal of Health Economics, Elsevier, vol. 17(3), pages 283-295, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. O’Malley, A. James & Paul, Sudeshna, 2015. "Using retrospective sampling to estimate models of relationship status in large longitudinal social networks," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 35-46.
    2. Felix Achana & Daniel Gallacher & Raymond Oppong & Sungwook Kim & Stavros Petrou & James Mason & Michael Crowther, 2021. "Multivariate Generalized Linear Mixed-Effects Models for the Analysis of Clinical Trial–Based Cost-Effectiveness Data," Medical Decision Making, , vol. 41(6), pages 667-684, August.
    3. Khin Thet Swe & Md Mizanur Rahman & Md Shafiur Rahman & Eiko Saito & Sarah K Abe & Stuart Gilmour & Kenji Shibuya, 2018. "Cost and economic burden of illness over 15 years in Nepal: A comparative analysis," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-14, April.
    4. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    5. Joseph F. Levy & Marjorie A. Rosenberg, 2019. "A Latent Class Approach to Modeling Trajectories of Health Care Cost in Pediatric Cystic Fibrosis," Medical Decision Making, , vol. 39(5), pages 593-604, July.
    6. Maria Gheorghe & Susan Picavet & Monique Verschuren & Werner B. F. Brouwer & Pieter H. M. Baal, 2017. "Health losses at the end of life: a Bayesian mixed beta regression approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 723-749, June.
    7. Mohit Goswami & Yash Daultani & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "A framework for the estimation of treatment costs of cardiovascular conditions in the presence of disease transition," Annals of Operations Research, Springer, vol. 328(1), pages 577-616, September.
    8. Maria Gheorghe & Renske J. Hoefman & Matthijs M. Versteegh & Job Exel, 2019. "Estimating Informal Caregiving Time from Patient EQ-5D Data: The Informal CARE Effect (iCARE) Tool," PharmacoEconomics, Springer, vol. 37(1), pages 93-103, January.
    9. Paul, Sudeshna & Keating, Nancy L. & Landon, Bruce E. & O'Malley, A. James, 2014. "Results from using a new dyadic-dependence model to analyze sociocentric physician networks," Social Science & Medicine, Elsevier, vol. 117(C), pages 67-75.
    10. Murray D. Krahn & Karen E. Bremner & Brandon Zagorski & Shabbir M. H. Alibhai & Wendong Chen & George Tomlinson & Nicholas Mitsakakis & Gary Naglie, 2014. "Health Care Costs for State Transition Models in Prostate Cancer," Medical Decision Making, , vol. 34(3), pages 366-378, April.
    11. Paul, Sudeshna & Keating, Nancy L. & Landon, Bruce E. & O’Malley, A. James, 2015. "Reprint of: Results from using a new dyadic-dependence model to analyze sociocentric physician networks," Social Science & Medicine, Elsevier, vol. 125(C), pages 51-59.
    12. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauwens, Luc & Rombouts, Jeroen V.K., 2012. "On marginal likelihood computation in change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
    2. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    3. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    4. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    5. Liviano Solís, Daniel & Arauzo Carod, Josep Maria, 2011. "Industrial Location and Space: New Insights," Working Papers 2072/152137, Universitat Rovira i Virgili, Department of Economics.
    6. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
    7. Zhu, Yanli & Chen, Haiqiang, 2017. "The asymmetry of U.S. monetary policy: Evidence from a threshold Taylor rule with time-varying threshold values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 522-535.
    8. McGrory, C.A. & Titterington, D.M., 2007. "Variational approximations in Bayesian model selection for finite mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5352-5367, July.
    9. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    10. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    11. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    12. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    13. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    14. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    15. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    16. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    17. Patrick Richard & Regine Walker & Pierre Alexandre, 2018. "The burden of out of pocket costs and medical debt faced by households with chronic health conditions in the United States," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    18. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    19. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    20. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:16:y:2007:i:1:p:37-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.