IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v150y2021icp566-586.html
   My bibliography  Save this article

A new spatial count data model with time-varying parameters

Author

Listed:
  • Buddhavarapu, Prasad
  • Bansal, Prateek
  • Prozzi, Jorge A.

Abstract

Recent crash frequency studies incorporate spatiotemporal correlations, but these studies have two key limitations – i) none of these studies accounts for temporal variation in model parameters; and ii) Gibbs sampler suffers from convergence issues due to non-conjugacy. To address the first limitation, we propose a new count data model that identifies the underlying temporal patterns of the regression parameters while simultaneously allowing for time-varying spatial correlation. The model is also extended to incorporate heterogeneity in non-temporal parameters across spatial units. We tackle the second shortcoming by deriving a Gibbs sampler that ensures conditionally conjugate posterior updates for all model parameters. To this end, we take the advantages of Pólya-Gamma data augmentation and forward filtering backward sampling algorithm. After validating the properties of the Gibbs sampler in a Monte Carlo study, the advantages of the proposed specification are demonstrated in an empirical application to uncover relationships between crash frequency spanning across nine years and pavement characteristics. Model parameters exhibit practically significant temporal patterns (i.e., temporal instability). For example, the safety benefits of better pavement ride quality are estimated to increase over time.

Suggested Citation

  • Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
  • Handle: RePEc:eee:transb:v:150:y:2021:i:c:p:566-586
    DOI: 10.1016/j.trb.2021.06.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521001272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.06.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    2. Bansal, Prateek & Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H., 2020. "Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 124-142.
    3. Prateek Bansal & Daniel Horcher & Daniel J. Graham, 2020. "A Dynamic Choice Model with Heterogeneous Decision Rules: Application in Estimating the User Cost of Rail Crowding," Papers 2007.03682, arXiv.org.
    4. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    5. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    6. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    9. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Xiong, Yingge & Mannering, Fred L., 2013. "The heterogeneous effects of guardian supervision on adolescent driver-injury severities: A finite-mixture random-parameters approach," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 39-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Ping Zhang & Chenzhu Wang & Fei Chen & Suping Cui & Jianchuan Cheng & Wu Bo, 2022. "A Random-Parameter Negative Binomial Model for Assessing Freeway Crash Frequency by Injury Severity: Daytime versus Nighttime," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    3. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    4. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    5. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Xiong, Yingge & Tobias, Justin L. & Mannering, Fred L., 2014. "The analysis of vehicle crash injury-severity data: A Markov switching approach with road-segment heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 109-128.
    7. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    8. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    9. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
    10. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    11. Reem Aljarallah & Samer A Kharroubi, 2021. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    12. Gao, Xing & Meng, Jing & Ling, Yantao & Liao, Maolin & Cao, Mengqiu, 2022. "Localisation economies, intellectual property rights protection and entrepreneurship in China: a Bayesian analysis of multi-level spatial correlation," LSE Research Online Documents on Economics 114290, London School of Economics and Political Science, LSE Library.
    13. Xu, Xuecai & Huang, Dong & Guo, Fengjun, 2020. "Addressing spatial heterogeneity of injury severity using Bayesian multilevel ordered probit model," Research in Transportation Economics, Elsevier, vol. 80(C).
    14. James C. Slaughter & Amy H. Herring & John M. Thorp, 2009. "A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth," Biometrics, The International Biometric Society, vol. 65(4), pages 1233-1242, December.
    15. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.
    16. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    17. Abdel-Aty, Mohamed & Lee, Jaeyoung & Siddiqui, Chowdhury & Choi, Keechoo, 2013. "Geographical unit based analysis in the context of transportation safety planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 62-75.
    18. Zeng, Qiang & Wen, Huiying & Huang, Helai & Wang, Jie & Lee, Jinwoo, 2020. "Analysis of crash frequency using a Bayesian underreporting count model with spatial correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. Jia Liu & Olivier Toubia, 2018. "A Semantic Approach for Estimating Consumer Content Preferences from Online Search Queries," Marketing Science, INFORMS, vol. 37(6), pages 930-952, November.
    20. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:150:y:2021:i:c:p:566-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.