Advanced Search
MyIDEAS: Login to save this article or follow this journal

Marginal likelihood estimation via power posteriors

Contents:

Author Info

  • N. Friel
  • A. N. Pettitt
Registered author(s):

    Abstract

    Model choice plays an increasingly important role in statistics. From a Bayesian perspective a crucial goal is to compute the marginal likelihood of the data for a given model. However, this is typically a difficult task since it amounts to integrating over all model parameters. The aim of the paper is to illustrate how this may be achieved by using ideas from thermodynamic integration or path sampling. We show how the marginal likelihood can be computed via Markov chain Monte Carlo methods on modified posterior distributions for each model. This then allows Bayes factors or posterior model probabilities to be calculated. We show that this approach requires very little tuning and is straightforward to implement. The new method is illustrated in a variety of challenging statistical settings. Copyright (c) 2008 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9868.2007.00650.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Volume (Year): 70 (2008)
    Issue (Month): 3 ()
    Pages: 589-607

    as in new window
    Handle: RePEc:bla:jorssb:v:70:y:2008:i:3:p:589-607

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssb
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9868&doi=10.1111/(ISSN)1467-9868

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sisson, Scott A., 2005. "Transdimensional Markov Chains: A Decade of Progress and Future Perspectives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1077-1089, September.
    2. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    3. P. G. Ridall & A. N. Pettitt & N. Friel & P. A. McCombe & R. D. Henderson, 2007. "Motor unit number estimation using reversible jump Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(3), pages 235-269.
    4. Ian L. Dryden & Mark R. Scarr & Charles C. Taylor, 2003. "Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 31-50.
    5. Francesco Bartolucci & Luisa Scaccia & Antonietta Mira, 2006. "Efficient Bayes factor estimation from the reversible jump output," Biometrika, Biometrika Trust, vol. 93(1), pages 41-52, March.
    6. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    7. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39.
    8. Jose M. Perez, 2002. "Expected-posterior prior distributions for model selection," Biometrika, Biometrika Trust, vol. 89(3), pages 491-512, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Loza-Reyes, E. & Hurn, M.A. & Robinson, A., 2014. "Classification of molecular sequence data using Bayesian phylogenetic mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 81-95.
    2. Calderhead, Ben & Girolami, Mark, 2009. "Estimating Bayes factors via thermodynamic integration and population MCMC," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4028-4045, October.
    3. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    4. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    5. Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
    6. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    7. Chan, Joshua & Eisenstat, Eric, 2012. "Marginal Likelihood Estimation with the Cross-Entropy Method," MPRA Paper 40051, University Library of Munich, Germany.
    8. Lefebvre, Geneviève & Steele, Russell & Vandal, Alain C., 2010. "A path sampling identity for computing the Kullback-Leibler and J divergences," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1719-1731, July.
    9. Heaps, Sarah E. & Boys, Richard J. & Farrow, Malcolm, 2014. "Computation of marginal likelihoods with data-dependent support for latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 392-401.
    10. Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Centre de Recherche en Economie et Statistique.
    12. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:3:p:589-607. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.