IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i3p751-757.html
   My bibliography  Save this article

Efficient recursions for general factorisable models

Author

Listed:
  • R. Reeves

Abstract

Let n S-valued categorical variables be jointly distributed according to a distribution known only up to an unknown normalising constant. For an unnormalised joint likelihood expressible as a product of factors, we give an algebraic recursion which can be used for computing the normalising constant and other summations. A saving in computation is achieved when each factor contains a lagged subset of the components combining in the joint distribution, with maximum computational efficiency as the subsets attain their minimum size. If each subset contains at most r+1 of the n components in the joint distribution, we term this a lag-r model, whose normalising constant can be computed using a forward recursion in O(S-super-r+1) computations, as opposed to O(S-super-n) for the direct computation. We show how a lag-r model represents a Markov random field and allows a neighbourhood structure to be related to the unnormalised joint likelihood. We illustrate the method by showing how the normalising constant of the Ising or autologistic model can be computed. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:3:p:751-757
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Cressie, Noel & Davidson, Jennifer L., 1998. "Image analysis with partially ordered markov models," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 1-26, November.
    2. Kaiser, Mark S. & Cressie, Noel, 2000. "The Construction of Multivariate Distributions from Markov Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 199-220, May.
    3. Ming Gao Gu & Hong‐Tu Zhu, 2001. "Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 339-355.
    4. Francesco Bartolucci, 2002. "A recursive algorithm for Markov random fields," Biometrika, Biometrika Trust, vol. 89(3), pages 724-730, August.
    5. Green P.J. & Richardson S., 2002. "Hidden Markov Models and Disease Mapping," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1055-1070, December.
    6. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
    2. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    3. Cécile Hardouin & Xavier Guyon, 2014. "Recursions on the marginals and exact computation of the normalizing constant for Gibbs processes," Computational Statistics, Springer, vol. 29(6), pages 1637-1650, December.
    4. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    5. Martinelli, Gabriele & Eidsvik, Jo & Hauge, Ragnar, 2013. "Dynamic decision making for graphical models applied to oil exploration," European Journal of Operational Research, Elsevier, vol. 230(3), pages 688-702.
    6. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    7. Lim, Johan & Wang, Xinlei & Sherman, Michael, 2007. "An adjustment for edge effects using an augmented neighborhood model in the spatial auto-logistic model," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3679-3688, May.
    8. N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
    9. Nial Friel & Håvard Rue, 2007. "Recursive computing and simulation-free inference for general factorizable models," Biometrika, Biometrika Trust, vol. 94(3), pages 661-672.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    2. Nial Friel & Håvard Rue, 2007. "Recursive computing and simulation-free inference for general factorizable models," Biometrika, Biometrika Trust, vol. 94(3), pages 661-672.
    3. Noel Cressie & Craig Liu, 2001. "Binary Markov Mesh Models and Symmetric Markov Random Fields: Some Results on their Equivalence," Methodology and Computing in Applied Probability, Springer, vol. 3(1), pages 5-34, March.
    4. Bartolucci, Francesco, 2011. "An alternative to the Baum-Welch recursions for hidden Markov models," MPRA Paper 38778, University Library of Munich, Germany.
    5. Noel Cressie & Jun Zhu & Adrian J. Baddeley & M. Gopalan Nair, 2000. "Directed Markov Point Processes as Limits of Partially Ordered Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 2(1), pages 5-21, April.
    6. Rulloni, Valeria, 2014. "Uniqueness condition for an auto-logistic model," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 1-6.
    7. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    8. Linda Khachatryan & Boris S. Nahapetian, 2023. "On the Characterization of a Finite Random Field by Conditional Distribution and its Gibbs Form," Journal of Theoretical Probability, Springer, vol. 36(3), pages 1743-1761, September.
    9. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    10. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    11. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    12. McCausland, William J., 2007. "Time reversibility of stationary regular finite-state Markov chains," Journal of Econometrics, Elsevier, vol. 136(1), pages 303-318, January.
    13. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    14. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    15. Petter Arnesen & Håkon Tjelmeland, 2015. "Fully Bayesian Binary Markov Random Field Models: Prior Specification and Posterior Simulation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 967-987, December.
    16. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    17. Xin Luo & Håkon Tjelmeland, 2019. "A multiple-try Metropolis–Hastings algorithm with tailored proposals," Computational Statistics, Springer, vol. 34(3), pages 1109-1133, September.
    18. Guedon, Yann, 2007. "Exploring the state sequence space for hidden Markov and semi-Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2379-2409, February.
    19. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    20. Ravishanker, Nalini & Liu, Zhaohui & Ray, Bonnie K., 2008. "NHPP models with Markov switching for software reliability," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3988-3999, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:3:p:751-757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.