IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v102y2020i3p960-981.html
   My bibliography  Save this article

Dairy Farm Management when Nutrient Runoff and Climate Emissions Count

Author

Listed:
  • Sanna Lötjönen
  • Esa Temmes
  • Markku Ollikainen

Abstract

We provide a theoretical framework and detailed bioeconomic simulations to examine privately and socially optimal dairy farm management in the presence of nutrient runoff and greenhouse gas emissions. Dairy farms produce milk by choosing herd size, diet, fertilization and land allocation between crops, as well as (discrete) manure storage and spreading technologies and the number of milking seasons. We show analytically that a critical radius emerges for the choice of land use between silage and cereal cultivation and fertilizer types (mineral and manure). Both privately and socially optimal manure application rates decrease with application distance. We characterize the optimal climate and water policy instruments for dairy farming. A detailed bioeconomic simulation model links farm management decisions with their impacts on climate and water quality. We numerically solve the social and private optima and the features of optimal climate and water policy instruments. We show that using only climate instruments provides considerable water co‐benefits, and in the same vein, the use of water quality instruments provides considerable climate co‐benefits. Climate policies lead to a reduction in herd size, as measures relating to manure management and spreading are relatively inefficient at reducing climate emissions. There is much more leeway for adapting to water policies than to climate policies, because dairy farms have multiple measures to reduce their nutrient loads.

Suggested Citation

  • Sanna Lötjönen & Esa Temmes & Markku Ollikainen, 2020. "Dairy Farm Management when Nutrient Runoff and Climate Emissions Count," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 960-981, May.
  • Handle: RePEc:wly:ajagec:v:102:y:2020:i:3:p:960-981
    DOI: 10.1002/ajae.12003
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ajae.12003
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ajae.12003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James S. Shortle & Richard D. Horan, 2001. "The Economics of Nonpoint Pollution Control," Journal of Economic Surveys, Wiley Blackwell, vol. 15(3), pages 255-289, July.
    2. Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
    3. Richard S.J. Tol, 2011. "The Social Cost of Carbon," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 419-443, October.
    4. Iho, Antti & Laukkanen, Marita, 2012. "Precision phosphorus management and agricultural phosphorus loading," Ecological Economics, Elsevier, vol. 77(C), pages 91-102.
    5. Huang, Wen-Yuan & Magleby, Richard S. & Christensen, Lee A., 2005. "Economic Impacts of EPA's Manure Application Regulations on Dairy Farms with Lagoon Liquid Systems in the Southwest Region," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    6. Jensen, Kimberly L. & Roberts, Roland K. & Bazen, Ernie & Menard, R. Jamey & English, Burton C., 2010. "Farmer Willingness to Supply Poultry Litter for Energy Conversion and to Invest in an Energy Conversion Cooperative," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(1), pages 105-119, February.
    7. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 98(4), pages 283-312.
    8. Robert Innes, 2000. "The Economics of Livestock Waste and Its Regulation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(1), pages 97-117.
    9. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    10. Sanna Lötjönen & Markku Ollikainen, 2017. "Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(4), pages 283-312, December.
    11. James S. Shortle & James W. Dunn, 1986. "The Relative Efficiency of Agricultural Source Water Pollution Control Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(3), pages 668-677.
    12. B. L. Gardner & G. C. Rausser (ed.), 2002. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 2, number 4.
    13. Gren, Ing-Marie & Folmer, Henk, 2003. "Cooperation with respect to cleaning of an international water body with stochastic environmental damage: the case of the Baltic Sea," Ecological Economics, Elsevier, vol. 47(1), pages 33-42, November.
    14. Jonathan D. Kaplan & Robert C. Johansson & Mark Peters, 2004. "The Manure Hits the Land: Economic and Environmental Implications When Land Application of Nutrients Is Constrained," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 688-700.
    15. Key, Nigel D. & Kaplan, Jonathan D., 2007. "Multiple Environmental Externalities and Manure Management Policy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(1), pages 1-20, April.
    16. B. L. Gardner & G. C. Rausser (ed.), 2002. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 2, number 3.
    17. Yap, Crystal & Foster, Kenneth A. & Preckel, Paul V. & Doering, Otto C., III & Richert, Brian T., 2004. "Mitigating the Compliance Cost of a Phosphorus-Based Swine Manure Management Policy," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-12, April.
    18. Kenneth A. Baerenklau & Nermin Nergis & Kurt A. Schwabe, 2008. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural‐Dynamic Model," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(2), pages 219-241, June.
    19. Janne Antero Helin, 2014. "Reducing nutrient loads from dairy farms: a bioeconomic model with endogenous feeding and land use," Agricultural Economics, International Association of Agricultural Economists, vol. 45(2), pages 167-184, March.
    20. Huang, Wen-yuan & Magleby, Richard & Christensen, Lee, 2005. "Economic Impacts of EPA's Manure Application Regulations on Dairy Farms with Lagoon Liquid Systems in the Southwest Region," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(1), pages 209-227, April.
    21. Schnitkey, Gary D. & Miranda, Mario J., 1993. "The Impact Of Pollution Controls On Livestock-Crop Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(1), pages 1-12, July.
    22. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    23. Lengers, Bernd, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 93(02), pages 117-144, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sihvonen, Matti & Pihlainen, Sampo & Lai, Tin-Yu & Salo, Tapio & Hyytiäinen, Kari, 2021. "Crop production, water pollution, or climate change mitigation—Which drives socially optimal fertilization management most?," Agricultural Systems, Elsevier, vol. 186(C).
    2. Scarlett Wang & Frederic Ang & Alfons Oude Lansink, 2023. "Mitigating greenhouse gas emissions on Dutch dairy farms. An efficiency analysis incorporating the circularity principle," Agricultural Economics, International Association of Agricultural Economists, vol. 54(6), pages 819-837, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lotjonen, S. & Temmes, E. & Ollikainen, M., 2018. "Spatial model of dairy farm management, nutrient runoff and greenhouse gas emissions: Private and social optima," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277111, International Association of Agricultural Economists.
    2. James Shortle & Richard D. Horan, 2017. "Nutrient Pollution: A Wicked Challenge for Economic Instruments," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-39, April.
    3. Iho, Antti & Parker, Doug & Zilberman, David, 2015. "Optimal Regional Regulation of Animal Waste," 2015 Conference, August 9-14, 2015, Milan, Italy 211780, International Association of Agricultural Economists.
    4. Iho, Antti & Parker, Doug & Zilberman, David, 2013. "Optimal Regional Policies to Control Manure Nutrients to Surface and Ground Waters," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149922, Agricultural and Applied Economics Association.
    5. Iho, Antti, 2013. "Optimal Regional Policies to Control Manure Nutrients to Surface and GroundWaters," 87th Annual Conference, April 8-10, 2013, Warwick University, Coventry, UK 158683, Agricultural Economics Society.
    6. Iho, Antti & Laukkanen, Marita, 2009. "Dynamically Optimal Phosphorus Management and Agricultural Water Protection," Discussion Papers 54285, MTT Agrifood Research Finland.
    7. Gregory S. Amacher & Erkki Koskela & Markku Ollikainen, 2004. "Deforestation, Production Intensity and Land Use under Insecure Property Rights," CESifo Working Paper Series 1128, CESifo.
    8. Guyomard, Herve & Lankoski, Jussi E. & Ollikainen, Markku, 2005. "Impacts of Agri-Environmental Policies on Land Allocation and Prices," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24466, European Association of Agricultural Economists.
    9. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.
    10. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    11. Antti Belinskij & Antti Iho & Tiina Paloniitty & Niko Soininen, 2019. "From Top–Down Regulation to Bottom–Up Solutions: Reconfiguring Governance of Agricultural Nutrient Loading to Waters," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    12. Niskanen, Olli & Iho, Antti & Kalliovirta, Leena, 2020. "Scenario for structural development of livestock production in the Baltic littoral countries," Agricultural Systems, Elsevier, vol. 179(C).
    13. Kosenius, A.-K. & Ollikainen, M., 2018. "Drivers of participation in gypsum treatment of fields as an innovation for water protection," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276048, International Association of Agricultural Economists.
    14. Kenneth A. Baerenklau & Nermin Nergis & Kurt A. Schwabe, 2008. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural‐Dynamic Model," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 56(2), pages 219-241, June.
    15. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    16. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    17. Jussi Lankoski & Erik Lichtenberg & Markku Ollikainen, 2010. "Agri-Environmental Program Compliance in a Heterogeneous Landscape," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(1), pages 1-22, September.
    18. Du Bois, Rodrigo Salcedo & Macias, Miguel Angel Gutierrez, 2013. "Cooperation makes it happen? Groundwater management in Aguascalientes, Mexico: An experimental approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151139, Agricultural and Applied Economics Association.
    19. Janne Antero Helin, 2014. "Reducing nutrient loads from dairy farms: a bioeconomic model with endogenous feeding and land use," Agricultural Economics, International Association of Agricultural Economists, vol. 45(2), pages 167-184, March.
    20. Ohe, Yasuo, 2009. "Educational Function of Agriculture and Farm Diversification: Evidence from Dairy Farming Experience Services in Japan," 2009 Conference, August 16-22, 2009, Beijing, China 51557, International Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:102:y:2020:i:3:p:960-981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.