IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i12p2959-2970.html
   My bibliography  Save this article

Water Distribution Scenarios in the Mexican Valley

Author

Listed:
  • Raquel Salazar
  • Ferenc Szidarovszky
  • Abraham Rojano

Abstract

Mexican Valley is one of the Mexico’s most critical areas of water supply, the groundwater resources are overexploited at a rate of 100% or more, generating ground sinking up to 0.4 cm/year in some areas. Water shortage in this area is already at an alarmingly critical level. The situation is expected to worsen due to increasing domestic, industrial and agricultural water demands. The limited water resources, the competing users and the combination of several water sources with different qualities require the development of an adequate water distribution system. The objective of this work is to generate a water distribution model as a three-person linear game in which the users are the players, the supplied amounts from five sources are the strategies, and the total water supplies are the payoffs. Since the available water supplies are lower than the total demands from the users, a tradeoff has to be determined. The nonsymmetric Nash bargaining method is used, which requires the solution of a special optimization problem with nonlinear objective function and linear constraints. For all water distribution scenarios there is no water distribution strategy that satisfies the domestic demand with the current system. Therefore investments and further developments are needed in combination with more efficient water usage by the three sectors in the near future to secure the satisfaction of domestic users. A market driven water pricing policy also would give an incentive to the users for more efficient usage of water. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Raquel Salazar & Ferenc Szidarovszky & Abraham Rojano, 2010. "Water Distribution Scenarios in the Mexican Valley," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2959-2970, September.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:2959-2970
    DOI: 10.1007/s11269-010-9589-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9589-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9589-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cyert, Richard M & DeGroot, Morris H, 1973. "An Analysis of Cooperation and Learning in a Duopoly Context," American Economic Review, American Economic Association, vol. 63(1), pages 24-37, March.
    2. Mehmet Kucukmehmetoglu, 2009. "A Game Theoretic Approach to Assess the Impacts of Major Investments on Transboundary Water Resources: The Case of the Euphrates and Tigris," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3069-3099, December.
    3. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    4. Qi Zhang & Adrian Werner, 2009. "Integrated Surface–Subsurface Modeling of Fuxianhu Lake Catchment, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2205-2205, September.
    5. Emery Coppola & Ferenc Szidarovszky, 2004. "Conflict Between Water Supply And Environmental Health Risk: A Computational Neural Network Approach," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 475-492.
    6. John C. Harsanyi & Reinhard Selten, 1972. "A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information," Management Science, INFORMS, vol. 18(5-Part-2), pages 80-106, January.
    7. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    8. Qi Zhang & Adrian Werner, 2009. "Integrated Surface–Subsurface Modeling of Fuxianhu Lake Catchment, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2189-2204, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elahe Fallah-Mehdipour & Omid Bozorg Haddad & Soheila Beygi & Miguel Mariño, 2011. "Effect of Utility Function Curvature of Young’s Bargaining Method on the Design of WDNs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2197-2218, July.
    2. Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
    3. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    4. Jianan Qin & Xiang Fu & Shaoming Peng & Yuni Xu & Jie Huang & Sha Huang, 2019. "Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    5. March, Hug & Therond, Olivier & Leenhardt, Delphine, 2012. "Water futures: Reviewing water-scenario analyses through an original interpretative framework," Ecological Economics, Elsevier, vol. 82(C), pages 126-137.
    6. Fan, Liangxin & Liu, Guobin & Wang, Fei & Geissen, Violette & Ritsema, Coen J. & Tong, Yan, 2013. "Water use patterns and conservation in households of Wei River Basin, China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 45-53.
    7. Mojtaba Sadegh & Reza Kerachian, 2011. "Water Resources Allocation Using Solution Concepts of Fuzzy Cooperative Games: Fuzzy Least Core and Fuzzy Weak Least Core," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2543-2573, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aust, Gerhard & Buscher, Udo, 2014. "Cooperative advertising models in supply chain management: A review," European Journal of Operational Research, Elsevier, vol. 234(1), pages 1-14.
    2. H. Delottier & A. Pryet & A. Dupuy, 2017. "Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 61-73, January.
    3. Roth, Alvin E & Murnighan, J Keith, 1982. "The Role of Information in Bargaining: An Experimental Study," Econometrica, Econometric Society, vol. 50(5), pages 1123-1142, September.
    4. José-Manuel Giménez-Gómez & António Osório & Josep E. Peris, 2015. "From Bargaining Solutions to Claims Rules: A Proportional Approach," Games, MDPI, vol. 6(1), pages 1-7, March.
    5. Geoffroy de Clippel & David Perez-Castrillo & David Wettstein, 2010. "Egalitarian Equivalence under Asymmetric Information," Working Papers 2010-5, Brown University, Department of Economics.
    6. de Clippel, Geoffroy & Pérez-Castrillo, David & Wettstein, David, 2012. "Egalitarian equivalence under asymmetric information," Games and Economic Behavior, Elsevier, vol. 75(1), pages 413-423.
    7. Eric van Damme & Xu Lang, 2022. "Two-Person Bargaining when the Disagreement Point is Private Information," Papers 2211.06830, arXiv.org, revised Jan 2024.
    8. Kunter, Marcus, 2012. "Coordination via cost and revenue sharing in manufacturer–retailer channels," European Journal of Operational Research, Elsevier, vol. 216(2), pages 477-486.
    9. R. Harrison Wagner, 1979. "On The Unification of Two-Person Bargaining Theory," Journal of Conflict Resolution, Peace Science Society (International), vol. 23(1), pages 71-101, March.
    10. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    11. van Velthoven, Ben & van Winden, Frans, 1985. "Towards a politico-economic theory of social security," European Economic Review, Elsevier, vol. 27(2), pages 263-289, March.
    12. Mariotti, Marco, 1996. "Non-optimal Nash Bargaining Solutions," Economics Letters, Elsevier, vol. 52(1), pages 15-20, July.
    13. Lv, Wei & Li, Hongyi & Tang, Jiafu, 2017. "Bargaining model of labor disputes considering social mediation and bounded rationalityAuthor-Name: Liu, Dehai," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1064-1071.
    14. Forgo, F. & Szidarovszky, F., 2003. "On the relation between the Nash bargaining solution and the weighting method," European Journal of Operational Research, Elsevier, vol. 147(1), pages 108-116, May.
    15. Lippman, Steven A. & McCardle, Kevin F. & Tang, Christopher S., 2013. "Using Nash bargaining to design project management contracts under cost uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 199-207.
    16. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    17. Jan Cervenka, 2019. "Bargaining Power: Significance, Structure and Development," ACTA VSFS, University of Finance and Administration, vol. 13(1), pages 79-93.
    18. Binmore, Ken & Osborne, Martin J. & Rubinstein, Ariel, 1992. "Noncooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 7, pages 179-225, Elsevier.
    19. Guangju Zhao & Georg Hörmann & Nicola Fohrer & Junfeng Gao & Hengpeng Li & Peng Tian, 2011. "Application of a Simple Raster-Based Hydrological Model for Streamflow Prediction in a Humid Catchment with Polder Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 661-676, January.
    20. Driesen, Bram & Perea, Andrés & Peters, Hans, 2012. "Alternating offers bargaining with loss aversion," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 103-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:12:p:2959-2970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.