IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i3p563-590.html
   My bibliography  Save this article

Parameter estimation for binomial AR(1) models with applications in finance and industry

Author

Listed:
  • Christian Weiß
  • Hee-Young Kim

Abstract

Methods for analyzing and modeling count data time series are used in various fields of practice, and they are particularly relevant for applications in finance and economy. We consider the binomial autoregressive (AR(1)) model for count data processes with a first-order AR dependence structure and a binomial marginal distribution. We present four approaches for estimating its model parameters based on given time series data, and we derive expressions for the asymptotic distribution of these estimators. Then we investigate the finite-sample performance of the estimators and of the respective asymptotic approximations in a simulation study, including a discussion of the 2-block jackknife. We illustrate our methods and findings with a real-data example about transactions at the Korea stock market. We conclude with an application of our results for obtaining reliable estimates for process capability indices. Copyright Springer-Verlag 2013

Suggested Citation

  • Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:563-590
    DOI: 10.1007/s00362-012-0449-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0449-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0449-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Brännäs, Kurt & Quoreshi, Shahiduzzaman, 2004. "Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks," Umeå Economic Studies 637, Umeå University, Department of Economics.
    3. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    4. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    5. Chambers, Marcus J., 2013. "Jackknife estimation of stationary autoregressive models," Journal of Econometrics, Elsevier, vol. 172(1), pages 142-157.
    6. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    7. Cui, Yunwei & Lund, Robert, 2010. "Inference in binomial models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1985-1990, December.
    8. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    9. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    10. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Robert Jung & Gerd Ronning & A. Tremayne, 2005. "Estimation in conditional first order autoregression with discrete support," Statistical Papers, Springer, vol. 46(2), pages 195-224, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hee-Young Kim & Christian H. Weiß & Tobias A. Möller, 2020. "Models for autoregressive processes of bounded counts: How different are they?," Computational Statistics, Springer, vol. 35(4), pages 1715-1736, December.
    2. Weiß, Christian H. & Schweer, Sebastian, 2016. "Bias corrections for moment estimators in Poisson INAR(1) and INARCH(1) processes," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 124-130.
    3. Sofia Paulino & Manuel Cabral Morais & Sven Knoth, 2019. "On ARL-unbiased c-charts for INAR(1) Poisson counts," Statistical Papers, Springer, vol. 60(4), pages 1021-1038, August.
    4. Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org.
    5. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    6. Tobias A. Möller & Maria Eduarda Silva & Christian H. Weiß & Manuel G. Scotto & Isabel Pereira, 2016. "Self-exciting threshold binomial autoregressive processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 369-400, October.
    7. Yao Kang & Dehui Wang & Kai Yang, 2021. "A new INAR(1) process with bounded support for counts showing equidispersion, underdispersion and overdispersion," Statistical Papers, Springer, vol. 62(2), pages 745-767, April.
    8. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    2. Weiß, Christian H., 2010. "INARCH(1) processes: Higher-order moments and jumps," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1771-1780, December.
    3. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    4. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    5. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.
    6. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    7. Christian H. Weiß & Sebastian Schweer, 2015. "Detecting overdispersion in INARCH(1) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 281-297, August.
    8. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    9. Youngmi Lee & Sangyeol Lee & Dag Tjøstheim, 2018. "Asymptotic normality and parameter change test for bivariate Poisson INGARCH models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 52-69, March.
    10. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    11. Scotto, Manuel G. & Weiß, Christian H. & Silva, Maria Eduarda & Pereira, Isabel, 2014. "Bivariate binomial autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 233-251.
    12. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    13. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    14. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    15. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    17. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    18. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    19. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    20. Chen, Cathy W.S. & Lee, Sangyeol, 2016. "Generalized Poisson autoregressive models for time series of counts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 51-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:3:p:563-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.