Advanced Search
MyIDEAS: Login

Condorcet choice functions and maximal elements

Contents:

Author Info

  • Begoña Subiza

    ()

  • Josep Peris

    ()

Abstract

Choice functions on tournaments always select the maximal element (Condorcet winner), provided they exist, but this property does not hold in the more general case of weak tournaments. In this paper we analyze the relationship between the usual choice functions and the set of maximal elements in weak tournaments. We introduce choice functions selecting maximal elements, whenever they exist. Moreover, we compare these choice functions with those that already exist in the literature.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s00355-003-0312-0
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Social Choice and Welfare.

Volume (Year): 24 (2005)
Issue (Month): 3 (06)
Pages: 497-508

as in new window
Handle: RePEc:spr:sochwe:v:24:y:2005:i:3:p:497-508

Contact details of provider:
Web page: http://link.springer.de/link/service/journals/00355/index.htm

Order Information:
Web: http://link.springer.de/orders.htm

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Peris, Josep E. & Subiza, Begona, 1994. "Maximal elements of not necessarily acyclic binary relations," Economics Letters, Elsevier, vol. 44(4), pages 385-388, April.
  2. Josep Enric Peris Ferrando & Begoña Subiza Martínez, 1997. "Condorcet choice correspondences for weak tournaments," Working Papers. Serie AD 1997-05, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  3. Dutta, Bhaskar, 1988. "Covering sets and a new condorcet choice correspondence," Journal of Economic Theory, Elsevier, vol. 44(1), pages 63-80, February.
  4. Laffond, Gilbert & Laslier, Jean Francois & Le Breton, Michel, 1995. "Condorcet choice correspondences: A set-theoretical comparison," Mathematical Social Sciences, Elsevier, vol. 30(1), pages 23-35, August.
  5. B. Dutta & J-F. Laslier, 1998. "Comparison functions and choice correspondences," THEMA Working Papers 98-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  6. Laffond G. & Laslier J. F. & Le Breton M., 1993. "The Bipartisan Set of a Tournament Game," Games and Economic Behavior, Elsevier, vol. 5(1), pages 182-201, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. García-Bermejo, Juan Carlos, 2012. "A Note on Selecting Maximals in Finite Spaces," Working Papers in Economic Theory 2012/06, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
  2. Gilbert Laffond & Jean Lainé, 2009. "Condorcet choice and the Ostrogorski paradox," Social Choice and Welfare, Springer, vol. 32(2), pages 317-333, February.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:spr:sochwe:v:24:y:2005:i:3:p:497-508. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.