IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i1d10.1007_s00291-021-00646-9.html
   My bibliography  Save this article

Optimal bidding functions for renewable energies in sequential electricity markets

Author

Listed:
  • Benedikt Finnah

    (University of Duisburg-Essen)

Abstract

In most modern energy markets, electricity is traded in pay-as-clear auctions. Usually, multiple sequential markets with daily auctions, in which each hourly product is traded separately, coexist. In each market and for each traded hour, each power producer and consumer submits multiple price and volume combinations, called bids. After all bids are submitted by the market participants, the market-clearing price for each hour is published, and the market participants must fulfill their accepted commitments. The corresponding decision problem is particularly difficult to solve for market participants with stochastic supply or demand. We formulate the energy trading problem as a dynamic program and derive the optimal bidding functions analytically via backward recursion. We demonstrate that, for each hour and market, the optimal bidding function is completely defined by two bids. While we focus on power producers with stochastic supply (e.g., wind or solar), our model is applicable to power consumers with stochastic demand, as well. The optimal policy is applicable in most liberalized energy markets, virtually independent of the structure of the underlying electricity price process.

Suggested Citation

  • Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:1:d:10.1007_s00291-021-00646-9
    DOI: 10.1007/s00291-021-00646-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-021-00646-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-021-00646-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis Boukas & Damien Ernst & Thibaut Th'eate & Adrien Bolland & Alexandre Huynen & Martin Buchwald & Christelle Wynants & Bertrand Corn'elusse, 2020. "A Deep Reinforcement Learning Framework for Continuous Intraday Market Bidding," Papers 2004.05940, arXiv.org.
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    4. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    5. Nils Löhndorf & David Wozabal & Stefan Minner, 2013. "Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual Dynamic Programming," Operations Research, INFORMS, vol. 61(4), pages 810-823, August.
    6. Jae Ho Kim & Warren B. Powell, 2011. "Optimal Energy Commitments with Storage and Intermittent Supply," Operations Research, INFORMS, vol. 59(6), pages 1347-1360, December.
    7. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2020. "A long-term unit commitment problem with hydrothermal coordination for economic and emission control in large-scale electricity systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 235-259, March.
    8. Densing, M., 2013. "Dispatch planning using newsvendor dual problems and occupation times: Application to hydropower," European Journal of Operational Research, Elsevier, vol. 228(2), pages 321-330.
    9. Wang, Jianzhou & Song, Yiliao & Liu, Feng & Hou, Ru, 2016. "Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 960-981.
    10. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    11. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    12. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    13. Finnah, Benedikt & Gönsch, Jochen, 2021. "Optimizing trading decisions of wind power plants with hybrid energy storage systems using backwards approximate dynamic programming," International Journal of Production Economics, Elsevier, vol. 238(C).
    14. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    15. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    16. Bertrand, Gilles & Papavasiliou, Anthony, 2020. "Adaptive Trading in Continuous Intraday Electricity Markets for a Storage Unit," LIDAM Reprints CORE 3104, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Boomsma, Trine Krogh & Juul, Nina & Fleten, Stein-Erik, 2014. "Bidding in sequential electricity markets: The Nordic case," European Journal of Operational Research, Elsevier, vol. 238(3), pages 797-809.
    18. Florian Ziel, 2015. "Forecasting Electricity Spot Prices using Lasso: On Capturing the Autoregressive Intraday Structure," Papers 1509.01966, arXiv.org, revised Jan 2016.
    19. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
    20. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    21. Sánchez de la Nieta, Agustín A. & Paterakis, Nikolaos G. & Gibescu, Madeleine, 2020. "Participation of photovoltaic power producers in short-term electricity markets based on rescheduling and risk-hedging mapping," Applied Energy, Elsevier, vol. 266(C).
    22. Weitzel, Timm & Glock, C. H., 2018. "Energy Management for Stationary Electric Energy Storage Systems: A Systematic Literature Review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 88880, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    23. Jochen Gönsch & Michael Hassler, 2016. "Sell or store? An ADP approach to marketing renewable energy," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 633-660, July.
    24. Wozabal, David & Rameseder, Gunther, 2020. "Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity," European Journal of Operational Research, Elsevier, vol. 280(2), pages 639-655.
    25. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    26. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    27. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rainer Baule & Michael Naumann, 2022. "Flexible Short-Term Electricity Certificates—An Analysis of Trading Strategies on the Continuous Intraday Market," Energies, MDPI, vol. 15(17), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    2. Finnah, Benedikt & Gönsch, Jochen, 2021. "Optimizing trading decisions of wind power plants with hybrid energy storage systems using backwards approximate dynamic programming," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    4. Schrotenboer, Albert H. & Veenstra, Arjen A.T. & uit het Broek, Michiel A.J. & Ursavas, Evrim, 2022. "A Green Hydrogen Energy System: Optimal control strategies for integrated hydrogen storage and power generation with wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Karakoyun, Ece Cigdem & Avci, Harun & Kocaman, Ayse Selin & Nadar, Emre, 2023. "Deviations from commitments: Markov decision process formulations for the role of energy storage," International Journal of Production Economics, Elsevier, vol. 255(C).
    6. Thomas Kuppelwieser & David Wozabal, 2023. "Intraday power trading: toward an arms race in weather forecasting?," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 57-83, March.
    7. Fokkema, Jan Eise & uit het Broek, Michiel A.J. & Schrotenboer, Albert H. & Land, Martin J. & Van Foreest, Nicky D., 2022. "Seasonal hydrogen storage decisions under constrained electricity distribution capacity," Renewable Energy, Elsevier, vol. 195(C), pages 76-91.
    8. Keles, Dogan & Dehler-Holland, Joris, 2022. "Evaluation of photovoltaic storage systems on energy markets under uncertainty using stochastic dynamic programming," Energy Economics, Elsevier, vol. 106(C).
    9. Narajewski, Michał & Ziel, Florian, 2022. "Optimal bidding in hourly and quarter-hourly electricity price auctions: Trading large volumes of power with market impact and transaction costs," Energy Economics, Elsevier, vol. 110(C).
    10. Alessio Trivella & Danial Mohseni-Taheri & Selvaprabu Nadarajah, 2023. "Meeting Corporate Renewable Power Targets," Management Science, INFORMS, vol. 69(1), pages 491-512, January.
    11. Jochen Gönsch & Michael Hassler, 2016. "Sell or store? An ADP approach to marketing renewable energy," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 633-660, July.
    12. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    13. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    14. Nadarajah, Selvaprabu & Secomandi, Nicola, 2023. "A review of the operations literature on real options in energy," European Journal of Operational Research, Elsevier, vol. 309(2), pages 469-487.
    15. Narajewski, Michał & Ziel, Florian, 2020. "Econometric modelling and forecasting of intraday electricity prices," Journal of Commodity Markets, Elsevier, vol. 19(C).
    16. Yangfang (Helen) Zhou & Alan Scheller‐Wolf & Nicola Secomandi & Stephen Smith, 2019. "Managing Wind‐Based Electricity Generation in the Presence of Storage and Transmission Capacity," Production and Operations Management, Production and Operations Management Society, vol. 28(4), pages 970-989, April.
    17. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    18. Bohlayer, Markus & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2020. "Energy-intense production-inventory planning with participation in sequential energy markets," Applied Energy, Elsevier, vol. 258(C).
    19. Ioannis Boukas & Damien Ernst & Thibaut Th'eate & Adrien Bolland & Alexandre Huynen & Martin Buchwald & Christelle Wynants & Bertrand Corn'elusse, 2020. "A Deep Reinforcement Learning Framework for Continuous Intraday Market Bidding," Papers 2004.05940, arXiv.org.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:1:d:10.1007_s00291-021-00646-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.