IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v55y2018i1d10.1007_s12597-017-0314-9.html
   My bibliography  Save this article

Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India

Author

Listed:
  • Manojit Chattopadhyay

    (Indian Institute of Management Raipur)

  • Subrata Kumar Mitra

    (Indian Institute of Management Raipur)

Abstract

The study explored the relationship of the climatic predictor variables such as seasonal temperature and rainfall pattern and non-climatic variable such as area under cultivation with the predictand per capita food grain production. We applied a linear method “Generalized Linear Model” and two non-linear methods “Multivariate Adaptive Regression Spline” and “Generalized Additive Model” to Indian data and assessed the data on basis of their performance in predicting food grain production. It was found that an adaptive version of generalized additive model has yielded the lowest predictive error in terms of lower root mean squared error. Better predictability of food grain production based on climatic factors may necessarily help to anticipate the nation’s food grain availability. The forecasts would facilitate scientists, farmers, policy makers, business organizations and the government to formulate appropriate adaptable strategies to cope with the climatic variability influence on food availability.

Suggested Citation

  • Manojit Chattopadhyay & Subrata Kumar Mitra, 2018. "Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 50-64, March.
  • Handle: RePEc:spr:opsear:v:55:y:2018:i:1:d:10.1007_s12597-017-0314-9
    DOI: 10.1007/s12597-017-0314-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-017-0314-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-017-0314-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    2. Kumar, Ajay & Sharma, Pritee, 2013. "Impact of climate variation on agricultural productivity and food security in rural India," Economics Discussion Papers 2013-43, Kiel Institute for the World Economy (IfW Kiel).
    3. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    4. Gerald C. Nelson & Gerald E. Shively, 2014. "Modeling climate change and agriculture: an introduction to the special issue," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 1-2, January.
    5. Allen, P. Geoffrey, 1994. "Economic forecasting in agriculture," International Journal of Forecasting, Elsevier, vol. 10(1), pages 81-135, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    2. Chalise, Sudarshan & Naranpanawa, Athula & Bandara, Jayatilleke S. & Sarker, Tapan, 2017. "A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal," Economic Modelling, Elsevier, vol. 62(C), pages 43-50.
    3. Sudarshan Chalise & Dr Athula Naranpanawa, 2016. "Climate change adaptation in agriculture: A general equilibrium analysis of land re-allocation in Nepal," EcoMod2016 9272, EcoMod.
    4. RESTU ANANDA, RIMA & Widodo, Tri, 2019. "A General Assessment of Climate Change - Loss of Agricultural Productivity in Indonesia," MPRA Paper 91316, University Library of Munich, Germany.
    5. Yifeng Xie & Haitao Wu & Ruikuan Yao, 2023. "The Impact of Climate Change on the Urban–Rural Income Gap in China," Agriculture, MDPI, vol. 13(9), pages 1-17, August.
    6. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    7. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    8. Covey, Theodore & Erickson, Kenneth W., 2003. "Evaluating USDA Forecasts of Farm Assets: 1986-2002," 2003 Regional Committee NCT-194, October 6-7, 2003; Kansas City, Missouri 132405, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    9. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    10. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    11. Paroissien, Emmanuel, 2020. "Forecasting bulk prices of Bordeaux wines using leading indicators," International Journal of Forecasting, Elsevier, vol. 36(2), pages 292-309.
    12. Haroon Mumtaz & Fulvia Marotta, 2023. "Vulnerability to Climate Change: Evidence from a Dynamic Factor Model," Working Papers 961, Queen Mary University of London, School of Economics and Finance.
    13. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    14. Bruno Lanz & Simon Dietz & Timothy Swanson, 2016. "Economic growth and agricultural land conversion under uncertain productivity improvements in agriculture," CIES Research Paper series 43-2016, Centre for International Environmental Studies, The Graduate Institute.
    15. Saira Batool & Areeba Amer, 2022. "Wheat Productivity in Variable Climates," International Journal of Agriculture & Sustainable Development, 50sea, vol. 4(1), pages 1-8, February.
    16. Garcia, Philip & Irwin, Scott H. & Leuthold, Raymond M. & Yang, Li, 1997. "The value of public information in commodity futures markets," Journal of Economic Behavior & Organization, Elsevier, vol. 32(4), pages 559-570, April.
    17. Uris L. C. Baldos & Thomas W. Hertel & Frances C. Moore, 2019. "Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and its Drivers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1455-1472, October.
    18. Li, Anzhi & Dorfman, Jeffrey H., 2014. "Composite Qualitative Forecasting of Futures Prices: Using One Commodity to Help Forecast Another," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169790, Agricultural and Applied Economics Association.
    19. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    20. Montaud, Jean-Marc & Pecastaing, Nicolas & Tankari, Mahamadou, 2017. "Potential socio-economic implications of future climate change and variability for Nigerien agriculture: A countrywide dynamic CGE-Microsimulation analysis," Economic Modelling, Elsevier, vol. 63(C), pages 128-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:55:y:2018:i:1:d:10.1007_s12597-017-0314-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.