IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i1d10.1007_s12351-020-00553-x.html
   My bibliography  Save this article

A robust network DEA model for sustainability assessment: an application to Chinese Provinces

Author

Listed:
  • Zhongfei Chen

    (Jinan University)

  • Stavros Kourtzidis

    (University of Dundee)

  • Panayiotis Tzeremes

    (University of Thessaly)

  • Nickolaos Tzeremes

    (University of Thessaly)

Abstract

This paper constructs an Environmental Sustainability index in order to investigate regional efficiency in China between 2000 and 2012. The Environmental Sustainability index consists of a Production Efficiency index and an Eco-efficiency index. A multiplicative relational network data envelopment analysis model is applied, and a window analysis is conducted to capture the efficiency trends over time. The results reveal significant heterogeneity among Chinese provinces for the Environmental Sustainability and the Eco-efficiency indices, while there is a high level of Production Efficiency across all provinces. Furthermore, there are large differences among geographical areas. Specifically, high Production Efficiency levels are reported for the eastern area, whereas, high Eco-efficiency levels are reported for the western area. The reported results provide valuable insights to decision makers, revealing a high potential for improvement in the overall Environmental Sustainability score, especially for the eastern and middle areas. In addition, regional heterogeneity should be taken into account when considering new legislation.

Suggested Citation

  • Zhongfei Chen & Stavros Kourtzidis & Panayiotis Tzeremes & Nickolaos Tzeremes, 2022. "A robust network DEA model for sustainability assessment: an application to Chinese Provinces," Operational Research, Springer, vol. 22(1), pages 235-262, March.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00553-x
    DOI: 10.1007/s12351-020-00553-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00553-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00553-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    2. Gjalt Huppes & Masanobu Ishikawa, 2005. "Eco‐efficiency and Its xsTerminology," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 43-46, October.
    3. Gjalt Huppes & Masanobu Ishikawa, 2011. "Visions for Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 641-642, October.
    4. Siriopoulos, Costas & Tziogkidis, Panagiotis, 2010. "How do Greek banking institutions react after significant events?--A DEA approach," Omega, Elsevier, vol. 38(5), pages 294-308, October.
    5. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    6. Pastor, Jesús T. & Asmild, Mette & Lovell, C.A. Knox, 2011. "The biennial Malmquist productivity change index," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 10-15, March.
    7. Jie Wu & Qingyuan Zhu & Pengzhen Yin & Malin Song, 2017. "Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices," Operational Research, Springer, vol. 17(3), pages 715-735, October.
    8. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    9. Tanaka, Shinsuke, 2015. "Environmental regulations on air pollution in China and their impact on infant mortality," Journal of Health Economics, Elsevier, vol. 42(C), pages 90-103.
    10. Hampf, Benjamin, 2018. "Measuring Inefficiency in the Presence of Bad Outputs: Does the Disposability Assumption Matter?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 110815, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    12. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    13. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    14. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    15. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    16. Kao, Chiang & Liu, Shiang-Tai, 2014. "Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks," Omega, Elsevier, vol. 47(C), pages 90-98.
    17. Seiford, Lawrence M. & Zhu, Joe, 2005. "A response to comments on modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 161(2), pages 579-581, March.
    18. Luis Alberiko Gil-Alaña & Carlos Pestana Barros & Zhongfei Chen, 2016. "The persistence of air pollution in four mega-cities of China," NCID Working Papers 04/2016, Navarra Center for International Development, University of Navarra.
    19. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    20. Chia‐Wei Chao & Hwong‐wen Ma & Reinout Heijungs, 2013. "The Green Economy Mirage?," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 835-845, December.
    21. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    22. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    23. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    24. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    25. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    26. Cheng Peng & Xunbo Wu & Yelin Fu & Kin Keung Lai, 2017. "Alternative approaches to constructing composite indicators: an application to construct a Sustainable Energy Index for APEC economies," Operational Research, Springer, vol. 17(3), pages 747-759, October.
    27. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    28. Wursthorn, Sibylle & Poganietz, Witold-Roger & Schebek, Liselotte, 2011. "Economic-environmental monitoring indicators for European countries: A disaggregated sector-based approach for monitoring eco-efficiency," Ecological Economics, Elsevier, vol. 70(3), pages 487-496, January.
    29. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    30. Mette Asmild & Joseph Paradi & Vanita Aggarwall & Claire Schaffnit, 2004. "Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry," Journal of Productivity Analysis, Springer, vol. 21(1), pages 67-89, January.
    31. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    32. E Thanassoulis & M Kortelainen & G Johnes & J Johnes, 2011. "Costs and efficiency of higher education institutions in England: a DEA analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1282-1297, July.
    33. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    34. Zhongwu Lu & Heming Wang & Qiang Yue, 2015. "Decoupling Analysis of the Environmental Mountain—with Case Studies from China," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1082-1090, December.
    35. Scheel, Holger, 2001. "Undesirable outputs in efficiency valuations," European Journal of Operational Research, Elsevier, vol. 132(2), pages 400-410, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Calzada-Infante & Ana María López-Narbona & Alberto Núñez-Elvira & Javier Orozco-Messana, 2020. "Assessing the Efficiency of Sustainable Cities Using an Empirical Approach," Sustainability, MDPI, vol. 12(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    2. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    3. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    4. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    5. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    6. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    7. repec:zbw:inwedp:752021 is not listed on IDEAS
    8. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    9. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    10. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    11. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    12. OA Carboni & P. Russu, 2014. "Measuring Environmental and Economic Efficiency in Italy: an Application of the Malmquist-DEA and Grey Forecasting Model," Working Paper CRENoS 201401, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    14. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    15. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    16. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    17. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    18. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    19. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    20. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    21. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.

    More about this item

    Keywords

    Chinese provinces; Eco-efficiency; Environmental sustainability; Network data envelopment analysis; Production efficiency;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • P25 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Urban, Rural, and Regional Economics
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:1:d:10.1007_s12351-020-00553-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.