IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i6d10.1007_s11027-018-9817-9.html
   My bibliography  Save this article

The sensitivity of the costs of reducing emissions from deforestation and degradation (REDD) to future socioeconomic drivers and its implications for mitigation policy design

Author

Listed:
  • Mykola Gusti

    (International Institute for Applied Systems Analysis (IIASA)
    Lviv Polytechnic National University)

  • Nicklas Forsell

    (International Institute for Applied Systems Analysis (IIASA))

  • Petr Havlik

    (International Institute for Applied Systems Analysis (IIASA))

  • Nikolay Khabarov

    (International Institute for Applied Systems Analysis (IIASA))

  • Florian Kraxner

    (International Institute for Applied Systems Analysis (IIASA))

  • Michael Obersteiner

    (International Institute for Applied Systems Analysis (IIASA))

Abstract

Climate change mitigation policies for the land use, land use change, and forestry (LULUCF) sector are commonly assessed based on marginal abatement cost curves (MACC) derived from optimization models or engineering approaches. Yet, little is known about the space of validity of MACCs and how they are influenced by changes in main underlying drivers. In this study, we apply the Global Forest Model (G4M) to explore the sensitivity of MACCs to variation of socioeconomic drivers of deforestation, afforestation, and forest management activities. Particularly, three key factors are considered: (I) wood price, as an indicator of timber market developments; (II) agricultural land price, as a proxy representing the developments on agricultural markets; and (III) corruption coefficient, representing the progress in institutional development and measuring abatement costs use efficiency. The results indicate that the MACCs are more sensitive to the corruption coefficient than to agricultural land price and wood price. Furthermore, we find that the MACCs are more robust with high carbon dioxide (CO2) price and that the sensitivity of the MACCs is higher at low CO2 prices. In general, it can be concluded that when assessing medium-term mitigation policies characterized by low CO2 prices, MACCs need to be developed in-line with institutions currently in place. When designing long-term mitigation policy characterized by high CO2 prices, the role of the analyzed drivers in MACCs estimation is less important.

Suggested Citation

  • Mykola Gusti & Nicklas Forsell & Petr Havlik & Nikolay Khabarov & Florian Kraxner & Michael Obersteiner, 2019. "The sensitivity of the costs of reducing emissions from deforestation and degradation (REDD) to future socioeconomic drivers and its implications for mitigation policy design," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1123-1141, August.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9817-9
    DOI: 10.1007/s11027-018-9817-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9817-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9817-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlo Carraro & Emanuele Massetti, 2012. "Beyond Copenhagen: a realistic climate policy in a fragmented world," Climatic Change, Springer, vol. 110(3), pages 523-542, February.
    2. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    3. Eory, Vera & Topp, Cairistiona F. E. & Moran, Dominic & Butler, Adam, 2014. "Assessing uncertainty in the cost-effectiveness of agricultural greenhouse gas mitigation," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170784, Agricultural Economics Society.
    4. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    5. Klepper, Gernot & Peterson, Sonja, 2003. "On the robustness of marginal abatement cost curves: the influence of world energy prices," Kiel Working Papers 1138, Kiel Institute for the World Economy (IfW Kiel).
    6. Vera Eory & Cairistiona F. E. Topp & Adam Butler & Dominic Moran, 2018. "Addressing Uncertainty in Efficient Mitigation of Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 627-645, September.
    7. Havlík,Petr & Valin,Hugo Jean Pierre & Gusti,Mykola & Schmid,Erwin & Forsell,Nicklas & Herrero,Mario & Khabarov,Nikolay & Mosnier,Aline & Cantele,Matthew & Obersteiner,Michael, 2015. "Climate change impacts and mitigation in the developing world : an integrated assessment of the agriculture and forestry sectors," Policy Research Working Paper Series 7477, The World Bank.
    8. Benitez, Pablo C. & Obersteiner, Michael, 2006. "Site identification for carbon sequestration in Latin America: A grid-based economic approach," Forest Policy and Economics, Elsevier, vol. 8(6), pages 636-651, August.
    9. Uwe A. Schneider & Bruce A. McCarl, 2006. "Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 277-287, November.
    10. Stefan Frank & Hannes Böttcher & Mykola Gusti & Petr Havlík & Ger Klaassen & Georg Kindermann & Michael Obersteiner, 2016. "Dynamics of the land use, land use change, and forestry sink in the European Union: the impacts of energy and climate targets for 2030," Climatic Change, Springer, vol. 138(1), pages 253-266, September.
    11. R. A. Houghton & Brett Byers & Alexander A. Nassikas, 2015. "A role for tropical forests in stabilizing atmospheric CO2," Nature Climate Change, Nature, vol. 5(12), pages 1022-1023, December.
    12. Michael J. Coren & Charlotte Streck & Erin Myers Madeira, 2011. "Estimated supply of RED credits 2011-2035," Climate Policy, Taylor & Francis Journals, vol. 11(6), pages 1272-1288, November.
    13. Bosetti, Valentina & Lubowski, Ruben & Golub, Alexander & Markandya, Anil, 2011. "Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility," Environment and Development Economics, Cambridge University Press, vol. 16(4), pages 479-505, August.
    14. Sathaye, Jayant A. & Anger, Niels, 2008. "Reducing Deforestation and Trading Emissions: Economic Implications for the post-Kyoto Carbon Market," ZEW Discussion Papers 08-016, ZEW - Leibniz Centre for European Economic Research.
    15. Webster, Mort & Sue Wing, Ian & Jakobovits, Lisa, 2010. "Second-best instruments for near-term climate policy: Intensity targets vs. the safety valve," Journal of Environmental Economics and Management, Elsevier, vol. 59(3), pages 250-259, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Kozicka & Petr Havlík & Hugo Valin & Eva Wollenberg & Andre Deppermann & David Leclère & Pekka Lauri & Rebekah Moses & Esther Boere & Stefan Frank & Chris Davis & Esther Park & Noel Gurwick, 2023. "Feeding climate and biodiversity goals with novel plant-based meat and milk alternatives," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendoza Beltran, Angelica & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & van Vliet, Jasper, 2011. "Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations," Energy Policy, Elsevier, vol. 39(11), pages 7361-7371.
    2. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    3. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    4. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    5. Cho, Seong-Hoon & Lee, Juhee & Roberts, Roland & Yu, Edward T. & Armsworth, Paul R., 2018. "Impact of market conditions on the effectiveness of payments for forest-based carbon sequestration," Forest Policy and Economics, Elsevier, vol. 92(C), pages 33-42.
    6. Adams, Thomas & Turner, James A., 2012. "An investigation into the effects of an emissions trading scheme on forest management and land use in New Zealand," Forest Policy and Economics, Elsevier, vol. 15(C), pages 78-90.
    7. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    8. Kaushal , Kevin R. & Rosendahl, Knut Einar, 2019. "Optimal REDD+ in the carbon market," Working Paper Series 3-2019, Norwegian University of Life Sciences, School of Economics and Business.
    9. Andrey Krasovskii & Nikolay Khabarov & Michael Obersteiner, 2014. "Impacts of the Fairly Priced REDD-based CO2 Offset Options on the Electricity Producers and Consumers," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 273-288.
    10. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    11. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    12. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    13. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    14. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    15. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    16. Stephane Hallegatte & Mook Bangalore & Laura Bonzanigo & Marianne Fay & Tamaro Kane & Ulf Narloch & Julie Rozenberg & David Treguer & Adrien Vogt-Schilb, 2016. "Shock Waves," World Bank Publications - Books, The World Bank Group, number 22787, December.
    17. Luis Abadie & Ibon Galarraga & Dirk Rübbelke, 2013. "An analysis of the causes of the mitigation bias in international climate finance," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 943-955, October.
    18. Ren, Xiaohang & Li, Yiying & yan, Cheng & Wen, Fenghua & Lu, Zudi, 2022. "The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    19. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    20. Jieshuang Dong & Yiming Li & Wenxiang Li & Songze Liu, 2022. "CO 2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China," Sustainability, MDPI, vol. 14(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9817-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.