IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i7d10.1007_s11027-017-9771-y.html
   My bibliography  Save this article

Bus fleet emissions: new strategies for mitigation by adopting natural gas

Author

Listed:
  • Rodrigo Galbieri

    (University of São Paulo)

  • Thiago Luis Felipe Brito

    (University of São Paulo)

  • Dominique Mouette

    (University of São Paulo)

  • Hirdan Katarina Medeiros Costa

    (University of São Paulo)

  • Edmilson Moutinho dos Santos

    (University of São Paulo)

  • Murilo Tadeu Werneck Fagá

    (University of São Paulo)

Abstract

Energy consumption is related to local, regional and global impacts. Thus, by comparing different replacement scenarios of diesel vehicles with compressed natural gas, this article estimates pollutants and greenhouse gases emission in the city of São Paulo, Brazil. The calculation of fuel consumption is based on fleet characteristics, in terms of vehicle age, the average annual distance travelled by bus depending on the year and average fuel consumption. These values served as a basis to develop scenarios considering that a percentage of new vehicles that will be phased out and replaced with ones running on natural gas. Results show that the total avoided emissions can range from 579 thousand tons to 1.375 million tons of carbon dioxide (CO2) over 20 years, depending on the scenario. For particulate matter, accumulated avoided emissions vary from 251 thousand to 584 tons over 20 years. The replacement of diesel buses with natural gas-fuelled buses presents favourable results, in comparison with the tendency scenario for CO2 and particulate matter. Thus, a public policy for fuel replacement in largest cities, such as Sao Paulo, has an important global impact, especially when allowing the introduction of a renewable energy source, such as biogas. It will benefit from the natural gas previous infrastructure, which is largely available in Brazil. As recommendations, we explain the need to review the city of Sao Paulo Climate Change Law to allow the use of natural gas. Fuel replacement should be integrated with a public policy/public policies and operational strategies to promote citizens´ health as well as historical, cultural and heritage conservation for the city and its future generations.

Suggested Citation

  • Rodrigo Galbieri & Thiago Luis Felipe Brito & Dominique Mouette & Hirdan Katarina Medeiros Costa & Edmilson Moutinho dos Santos & Murilo Tadeu Werneck Fagá, 2018. "Bus fleet emissions: new strategies for mitigation by adopting natural gas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1039-1062, October.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:7:d:10.1007_s11027-017-9771-y
    DOI: 10.1007/s11027-017-9771-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-017-9771-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-017-9771-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    2. Sunil Prashar & Rajib Shaw & Yukiko Takeuchi, 2013. "Community action planning in East Delhi: a participatory approach to build urban disaster resilience," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 429-448, April.
    3. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    4. Yang Jiang & Pericles Zegras & Dongquan He & Qizhi Mao, 2015. "Does energy follow form? The case of household travel in Jinan, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 701-718, June.
    5. Brito, Thiago Luis Felipe & Moutinho dos Santos, Edmilson & Galbieri, Rodrigo & Costa, Hirdan Katarina de Medeiros, 2017. "Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 502-508.
    6. Apergis, Nicholas & Payne, James E., 2010. "The emissions, energy consumption, and growth nexus: Evidence from the commonwealth of independent states," Energy Policy, Elsevier, vol. 38(1), pages 650-655, January.
    7. Ghali, Khalifa H. & El-Sakka, M. I. T., 2004. "Energy use and output growth in Canada: a multivariate cointegration analysis," Energy Economics, Elsevier, vol. 26(2), pages 225-238, March.
    8. Jiangyan Wang & Dongquan He, 2015. "Sustainable urban development in China: challenges and achievements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 665-682, June.
    9. Lee, Chien-Chiang, 2005. "Energy consumption and GDP in developing countries: A cointegrated panel analysis," Energy Economics, Elsevier, vol. 27(3), pages 415-427, May.
    10. Jun Li, 2011. "Supporting greenhouse gas mitigation in developing cities: a synthesis of financial instruments," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(6), pages 677-698, August.
    11. Galeotti, Marzio & Lanza, Alessandro, 1999. "Richer and cleaner? A study on carbon dioxide emissions in developing countries," Energy Policy, Elsevier, vol. 27(10), pages 565-573, October.
    12. Amit Garg & P.R. Shukla & Debyani Ghosh & Manmohan Kapshe & Nair Rajesh, 2003. "Future Greenhouse Gas and Local Pollutant Emissions for India: Policy Links and Disjoints," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(1), pages 71-92, March.
    13. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    14. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    15. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    16. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    17. Cohen, Joshua T., 2005. "Diesel vs. compressed natural gas for school buses: a cost-effectiveness evaluation of alternative fuels," Energy Policy, Elsevier, vol. 33(13), pages 1709-1722, September.
    18. Yuanqing Wang & Liu Yang & Sunsheng Han & Chao Li & T. V. Ramachandra, 2017. "Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 993-1019, October.
    19. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    20. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    21. Klaus Eisenack & Rebecca Stecker & Diana Reckien & Esther Hoffmann, 2012. "Adaptation to climate change in the transport sector: a review of actions and actors," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(5), pages 451-469, June.
    22. Lee, Chien-Chiang & Chang, Chun-Ping & Chen, Pei-Fen, 2008. "Energy-income causality in OECD countries revisited: The key role of capital stock," Energy Economics, Elsevier, vol. 30(5), pages 2359-2373, September.
    23. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    24. López, José M & Gómez, Álvaro & Aparicio, Francisco & Javier Sánchez, Fco., 2009. "Comparison of GHG emissions from diesel, biodiesel and natural gas refuse trucks of the City of Madrid," Applied Energy, Elsevier, vol. 86(5), pages 610-615, May.
    25. Apergis, Nicholas & Payne, James E., 2009. "CO2 emissions, energy usage, and output in Central America," Energy Policy, Elsevier, vol. 37(8), pages 3282-3286, August.
    26. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    27. Tucker, Michael, 1995. "Carbon dioxide emissions and global GDP," Ecological Economics, Elsevier, vol. 15(3), pages 215-223, December.
    28. Ozturk, Ilhan & Acaravci, Ali, 2013. "The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey," Energy Economics, Elsevier, vol. 36(C), pages 262-267.
    29. Taedong Lee & Sara Hughes, 2017. "Perceptions of urban climate hazards and their effects on adaptation agendas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 761-776, June.
    30. Carmen Difiglio & Dolf Gielen, 2007. "Hydrogen and transportation: alternative scenarios," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(3), pages 387-405, March.
    31. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    32. Xian, Hui & Karali, Berna & Colson, Gregory & Wetzstein, Michael E., 2015. "Diesel or compressed natural gas? A real options evaluation of the U.S. natural gas boom on fuel choice for trucking fleets," Energy, Elsevier, vol. 90(P2), pages 1342-1348.
    33. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    34. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    35. Soytas, Ugur & Sari, Ramazan & Ewing, Bradley T., 2007. "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, Elsevier, vol. 62(3-4), pages 482-489, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravigné, E. & Da Costa, P., 2021. "Economic and environmental performances of natural gas for heavy trucks: A case study on the French automotive industry supply chain," Energy Policy, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brito, Thiago Luis Felipe & Moutinho dos Santos, Edmilson & Galbieri, Rodrigo & Costa, Hirdan Katarina de Medeiros, 2017. "Qualitative Comparative Analysis of cities that introduced compressed natural gas to their urban bus fleet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 502-508.
    2. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    3. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    4. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    5. Misbah Sadiq & Desti Kannaiah & Ghulam Yahya Khan & Malik Shahzad Shabbir & Kanwal Bilal & Aysha Zamir, 2023. "Does sustainable environmental agenda matter? The role of globalization toward energy consumption, economic growth, and carbon dioxide emissions in South Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 76-95, January.
    6. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    7. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    8. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    9. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    10. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    11. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    12. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    13. Alkhathlan, Khalid & Javid, Muhammad, 2013. "Energy consumption, carbon emissions and economic growth in Saudi Arabia: An aggregate and disaggregate analysis," Energy Policy, Elsevier, vol. 62(C), pages 1525-1532.
    14. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    15. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    16. Zhihui Lv & Amanda M. Y. Chu & Michael McAleer & Wing-Keung Wong, 2019. "Modelling Economic Growth, Carbon Emissions, and Fossil Fuel Consumption in China: Cointegration and Multivariate Causality," IJERPH, MDPI, vol. 16(21), pages 1-35, October.
    17. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    18. Bouznit, Mohammed & Pablo-Romero, María del P., 2016. "CO2 emission and economic growth in Algeria," Energy Policy, Elsevier, vol. 96(C), pages 93-104.
    19. Itkonen, Juha V.A., 2012. "Problems estimating the carbon Kuznets curve," Energy, Elsevier, vol. 39(1), pages 274-280.
    20. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:7:d:10.1007_s11027-017-9771-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.