IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v14y2009i6p569-578.html
   My bibliography  Save this article

Mitigation of greenhouse gases by adoption of improved biomass cookstoves

Author

Listed:
  • N. Panwar
  • A. Kurchania
  • N. Rathore

Abstract

No abstract is available for this item.

Suggested Citation

  • N. Panwar & A. Kurchania & N. Rathore, 2009. "Mitigation of greenhouse gases by adoption of improved biomass cookstoves," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(6), pages 569-578, August.
  • Handle: RePEc:spr:masfgc:v:14:y:2009:i:6:p:569-578
    DOI: 10.1007/s11027-009-9184-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-009-9184-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-009-9184-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhattacharya, S.C. & Abdul Salam, P. & Sharma, Mahen, 2000. "Emissions from biomass energy use in some selected Asian countries," Energy, Elsevier, vol. 25(2), pages 169-188.
    2. Kishore, V.V.N & Ramana, P.V, 2002. "Improved cookstoves in rural India: how improved are they?," Energy, Elsevier, vol. 27(1), pages 47-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kursun, Berrin & Bakshi, Bhavik R. & Mahata, Manoj & Martin, Jay F., 2015. "Life cycle and emergy based design of energy systems in developing countries: Centralized and localized options," Ecological Modelling, Elsevier, vol. 305(C), pages 40-53.
    2. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    3. Elías Hurtado Pérez & Oscar Mulumba Ilunga & David Alfonso Solar & María Cristina Moros Gómez & Paula Bastida-Molina, 2020. "Sustainable Cooking Based on a 3 kW Air-Forced Multifuel Gasification Stove Using Alternative Fuels Obtained from Agricultural Wastes," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    4. Vahlne, Niklas & Ahlgren, Erik O., 2014. "Policy implications for improved cook stove programs—A case study of the importance of village fuel use variations," Energy Policy, Elsevier, vol. 66(C), pages 484-495.
    5. Rowlands, Ian, 2011. "Co-impacts of energy-related climate change mitigation in Africa’s least developed countries: the evidence base and research needs," LSE Research Online Documents on Economics 37575, London School of Economics and Political Science, LSE Library.
    6. Wilson, D.L. & Talancon, D.R. & Winslow, R.L. & Linares, X. & Gadgil, A.J., 2016. "Avoided emissions of a fuel-efficient biomass cookstove dwarf embodied emissions," Development Engineering, Elsevier, vol. 1(C), pages 45-52.
    7. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    8. Muhammad Abrar Ul Haq & Muhammad Atif Nawaz & Farheen Akram & Vinodh K. Natarajan, 2020. "Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 546-554.
    9. Ian Rowlands, 2011. "Ancillary impacts of energy-related climate change mitigation options in Africa’s least developed countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 749-773, October.
    10. Mehetre, Sonam A. & Panwar, N.L. & Sharma, Deepak & Kumar, Himanshu, 2017. "Improved biomass cookstoves for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 672-687.
    11. N. Panwar & N. Rathore, 2009. "Potential of surplus biomass gasifier based power generation: A case study of an Indian state Rajasthan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(8), pages 711-720, December.
    12. Ian H. Rowlands, 2011. "Co-impacts of energy-related climate change mitigation in Africa�s least developed countries: the evidence base and research needs," GRI Working Papers 39, Grantham Research Institute on Climate Change and the Environment.
    13. Sutar, Kailasnath B. & Kohli, Sangeeta & Ravi, M.R. & Ray, Anjan, 2015. "Biomass cookstoves: A review of technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1128-1166.
    14. Lori DiPrete Brown & Sumudu Atapattu & Valerie Jo Stull & Claudia Irene Calderón & Mariaelena Huambachano & Marie Josée Paula Houénou & Anna Snider & Andrea Monzón, 2020. "From a Three-Legged Stool to a Three-Dimensional World: Integrating Rights, Gender and Indigenous Knowledge into Sustainability Practice and Law," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    15. Lee, Jaehyung & Jang, Heesun, 2022. "A real options study on cook stove CDM project under emission allowance price uncertainty," Journal of Asian Economics, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2016. "An integrated systems model for energy services in rural developing communities," Energy, Elsevier, vol. 113(C), pages 536-557.
    2. Kuprianov, Vladimir I. & Kaewklum, Rachadaporn & Chakritthakul, Songpol, 2011. "Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel," Energy, Elsevier, vol. 36(4), pages 2038-2048.
    3. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    4. Chen, Le & Heerink, Nico & van den Berg, Marrit, 2006. "Energy consumption in rural China: A household model for three villages in Jiangxi Province," Ecological Economics, Elsevier, vol. 58(2), pages 407-420, June.
    5. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    6. MacCarty, Nordica A. & Bryden, Kenneth Mark, 2017. "Costs and impacts of potential energy strategies for rural households in developing communities," Energy, Elsevier, vol. 138(C), pages 1157-1174.
    7. Raman, P. & Ram, N.K. & Murali, J., 2014. "Improved test method for evaluation of bio-mass cook-stoves," Energy, Elsevier, vol. 71(C), pages 479-495.
    8. Brooks, Nina & Biswas, Debashish & Hossin, Raduan & Yu, Alexander & Saha, Shampa & Saha, Senjuti & Saha, Samir K. & Luby, Stephen P., 2023. "Health consequences of small-scale industrial pollution: Evidence from the brick sector in Bangladesh," World Development, Elsevier, vol. 170(C).
    9. Sesan, Temilade, 2012. "Navigating the limitations of energy poverty: Lessons from the promotion of improved cooking technologies in Kenya," Energy Policy, Elsevier, vol. 47(C), pages 202-210.
    10. Mladenović, Rastko & Dakić, Dragoljub & Erić, Aleksandar & Mladenović, Milica & Paprika, Milijana & Repić, Branislav, 2009. "The boiler concept for combustion of large soya straw bales," Energy, Elsevier, vol. 34(5), pages 715-723.
    11. Atteridge, Aaron & Weitz, Nina, 2017. "A political economy perspective on technology innovation in the Kenyan clean cookstove sector," Energy Policy, Elsevier, vol. 110(C), pages 303-312.
    12. Vasundhara Bhojvaid & Marc Jeuland & Abhishek Kar & Jessica J. Lewis & Subhrendu K. Pattanayak & Nithya Ramanathan & Veerabhadran Ramanathan & Ibrahim H. Rehman, 2014. "How do People in Rural India Perceive Improved Stoves and Clean Fuel? Evidence from Uttar Pradesh and Uttarakhand," IJERPH, MDPI, vol. 11(2), pages 1-18, January.
    13. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Pang, Mingyue & Hao, Yan, 2017. "A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China," Energy, Elsevier, vol. 120(C), pages 374-384.
    14. Zhang, Zongxi & Zhang, Yixiang & Zhou, Yuguang & Ahmad, Riaz & Pemberton-Pigott, Crispin & Annegarn, Harold & Dong, Renjie, 2017. "Systematic and conceptual errors in standards and protocols for thermal performance of biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1343-1354.
    15. Bhattacharya, Soma & Cropper, Maureen L., 2010. "Options for Energy Efficiency in India and Barriers to Their Adoption: A Scoping Study," RFF Working Paper Series dp-10-20, Resources for the Future.
    16. García-Frapolli, Eduardo & Schilmann, Astrid & Berrueta, Victor M. & Riojas-Rodríguez, Horacio & Edwards, Rufus D. & Johnson, Michael & Guevara-Sanginés, Alejandro & Armendariz, Cynthia & Masera, Omar, 2010. "Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico," Ecological Economics, Elsevier, vol. 69(12), pages 2598-2605, October.
    17. Venkatachalam ANBUMOZHI & Ponciano S. INTAL, Jr., 2015. "Can Thinking Green and Sustainability Be an Economic Opportunity for ASEAN?," Working Papers DP-2015-66, Economic Research Institute for ASEAN and East Asia (ERIA).
    18. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    19. Yu, Liu & Yaoqiu, Kuang & Ningsheng, Huang & Zhifeng, Wu & Lianzhong, Xu, 2008. "Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation," Renewable Energy, Elsevier, vol. 33(9), pages 2027-2035.
    20. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:14:y:2009:i:6:p:569-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.