IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v7y2021i1d10.1186_s40854-021-00280-y.html
   My bibliography  Save this article

Implied volatility estimation of bitcoin options and the stylized facts of option pricing

Author

Listed:
  • Noshaba Zulfiqar

    (COMSATS University Islamabad - Wah Campus)

  • Saqib Gulzar

    (COMSATS University Islamabad - Wah Campus)

Abstract

The recently developed Bitcoin futures and options contracts in cryptocurrency derivatives exchanges mark the beginning of a new era in Bitcoin price risk hedging. The need for these tools dates back to the market crash of 1987, when investors needed better ways to protect their portfolios through option insurance. These tools provide greater flexibility to trade and hedge volatile swings in Bitcoin prices effectively. The violation of constant volatility and the log-normality assumption of the Black–Scholes option pricing model led to the discovery of the volatility smile, smirk, or skew in options markets. These stylized facts; that is, the volatility smile and implied volatilities implied by the option prices, are well documented in the option literature for almost all financial markets. These are expected to be true for Bitcoin options as well. The data sets for the study are based on short-dated Bitcoin options (14-day maturity) of two time periods traded on Deribit Bitcoin Futures and Options Exchange, a Netherlands-based cryptocurrency derivative exchange. The estimated results are compared with benchmark Black–Scholes implied volatility values for accuracy and efficiency analysis. This study has two aims: (1) to provide insights into the volatility smile in Bitcoin options and (2) to estimate the implied volatility of Bitcoin options through numerical approximation techniques, specifically the Newton Raphson and Bisection methods. The experimental results show that Bitcoin options belong to the commodity class of assets based on the presence of a volatility forward skew in Bitcoin option data. Moreover, the Newton Raphson and Bisection methods are effective in estimating the implied volatility of Bitcoin options. However, the Newton Raphson forecasting technique converges faster than does the Bisection method.

Suggested Citation

  • Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
  • Handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00280-y
    DOI: 10.1186/s40854-021-00280-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-021-00280-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-021-00280-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    3. Rehman, Mobeen Ur & Apergis, Nicholas, 2019. "Determining the predictive power between cryptocurrencies and real time commodity futures: Evidence from quantile causality tests," Resources Policy, Elsevier, vol. 61(C), pages 603-616.
    4. Isengildina-Massa, Olga & Curtis, Charles E., Jr. & Bridges, William & Nian, Minhuan, 2007. "Accuracy of Implied Volatility Approximations Using "Nearest-to-the-Money" Option Premiums," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34927, Southern Agricultural Economics Association.
    5. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    6. Michael A. Kelly, 2006. "Faster Implied Volatilities via the Implicit Function Theorem," The Financial Review, Eastern Finance Association, vol. 41(4), pages 589-597, November.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    9. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    10. Chance, Don M, 1996. "A Generalized Simple Formula to Compute the Implied Volatility," The Financial Review, Eastern Finance Association, vol. 31(4), pages 859-867, November.
    11. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    12. Matthias Fengler, 2010. "Option data and modeling BSM implied volatility," University of St. Gallen Department of Economics working paper series 2010 2010-32, Department of Economics, University of St. Gallen.
    13. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    14. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    15. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    16. Chiras, Donald P. & Manaster, Steven, 1978. "The information content of option prices and a test of market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 213-234.
    17. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    18. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    19. R. H. Berry & X. Zuo, 2009. "Calculating implied volatility using the bisection algorithm: a note," Applied Economics Letters, Taylor & Francis Journals, vol. 16(14), pages 1399-1402.
    20. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    21. Wen, Fenghua & Xu, Longhao & Ouyang, Guangda & Kou, Gang, 2019. "Retail investor attention and stock price crash risk: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 65(C).
    22. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    23. Chambers, Donald R & Nawalkha, Sanjay K, 2001. "An Improved Approach to Computing Implied Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 89-99, August.
    24. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    25. Curtis, Charles E., Jr. & Carriker, Gordon L., 1988. "Estimating Implied Volatility Directly from "Nearest-to-the-Money" Commodity Option Premiums," Working Papers 116875, Clemson University, Department of Agricultural and Applied Economics.
    26. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    27. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    28. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    29. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    30. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    31. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    32. Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
    33. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    34. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    35. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    36. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    37. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    38. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    39. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    40. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    41. Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
    42. Jakub Bartos, 2015. "Does Bitcoin follow the hypothesis of efficient market?," International Journal of Economic Sciences, International Institute of Social and Economic Sciences, vol. 4(2), pages 10-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Ingber, 2022. "Quantum Variables in Finance," Lester Ingber Papers 22qv, Lester Ingber.
    2. Jevgeni Tarassov & Nicolas Houli'e, 2023. "Bitcoin: A life in crises," Papers 2304.09939, arXiv.org.
    3. Fatih Ecer & Tolga Murat & Hasan Dinçer & Serhat Yüksel, 2024. "A fuzzy BWM and MARCOS integrated framework with Heronian function for evaluating cryptocurrency exchanges: a case study of Türkiye," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    4. Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
    5. Francisco Javier García-Corral & José Antonio Cordero-García & Jaime de Pablo-Valenciano & Juan Uribe-Toril, 2022. "A bibliometric review of cryptocurrencies: how have they grown?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Don M. Chance & Thomas A. Hanson & Weiping Li & Jayaram Muthuswamy, 2017. "A bias in the volatility smile," Review of Derivatives Research, Springer, vol. 20(1), pages 47-90, April.
    4. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    7. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    8. Gregor Dorfleitner & Carina Lung, 2018. "Cryptocurrencies from the perspective of euro investors: a re-examination of diversification benefits and a new day-of-the-week effect," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 472-494, December.
    9. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    10. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    11. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    12. Yue, Tian & Gehricke, Sebastian A. & Zhang, Jin E. & Pan, Zheyao, 2021. "The implied volatility smirk in the Chinese equity options market," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    13. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    14. Walid Bakry & Audil Rashid & Somar Al-Mohamad & Nasser El-Kanj, 2021. "Bitcoin and Portfolio Diversification: A Portfolio Optimization Approach," JRFM, MDPI, vol. 14(7), pages 1-24, June.
    15. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    16. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    17. Mariusz Tarnopolski, 2017. "Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach," Papers 1707.03746, arXiv.org, revised Aug 2017.
    18. Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
    19. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    20. Bhuiyan, Rubaiyat Ahsan & Husain, Afzol & Zhang, Changyong, 2021. "A wavelet approach for causal relationship between bitcoin and conventional asset classes," Resources Policy, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:7:y:2021:i:1:d:10.1186_s40854-021-00280-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.