IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v65y2023ics0275531923000715.html
   My bibliography  Save this article

Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs

Author

Listed:
  • Ghosh, Bikramaditya
  • Bouri, Elie
  • Wee, Jung Bum
  • Zulfiqar, Noshaba

Abstract

Stylized facts of returns and volatility are an important approximation tool for empirical finance studies, especially in the area of young and new assets. In this paper, we examine the return and volatility properties of four non-fungible tokens (NFTs) and four cryptocurrencies from 24th January 2018–2nd August 2022. The results show the following: Firstly, the returns of both NFTs and cryptocurrencies have fat tails, with evidence of tail exponents following the inverse cubic-law, along with clear persistence behavior. Secondly, all returns exhibit volatility clustering, albeit to varying degrees, and the detected absence of inverse volatility-asymmetry challenges the safe-haven property often documented for cryptocurrencies. Thirdly, return-based long-memory is slightly more intense than volatility-based long-memory, especially for NFTs, which demonstrate a predictability contesting market efficiency. These findings are generally consistent with previous findings on equities, implying that the return and volatility behavior of NFTs and cryptocurrencies is leaning towards that of traditional assets.

Suggested Citation

  • Ghosh, Bikramaditya & Bouri, Elie & Wee, Jung Bum & Zulfiqar, Noshaba, 2023. "Return and volatility properties: Stylized facts from the universe of cryptocurrencies and NFTs," Research in International Business and Finance, Elsevier, vol. 65(C).
  • Handle: RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000715
    DOI: 10.1016/j.ribaf.2023.101945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923000715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.101945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    2. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Xiang Wu & Liang Wu & Shujuan Chen, 2022. "Long memory and efficiency of Bitcoin during COVID-19," Applied Economics, Taylor & Francis Journals, vol. 54(4), pages 375-389, January.
    4. Shaen Corbet & John W. Goodell & Samet Gunay & Kerem Kaskaloglu, 2023. "Are DeFi tokens a separate asset class from conventional cryptocurrencies?," Annals of Operations Research, Springer, vol. 322(2), pages 609-630, March.
    5. Lennart Ante, 2022. "The Non-Fungible Token (NFT) Market and Its Relationship with Bitcoin and Ethereum," FinTech, MDPI, vol. 1(3), pages 1-9, June.
    6. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    7. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2022. "What drives DeFi prices? Investigating the effects of investor attention," Finance Research Letters, Elsevier, vol. 48(C).
    8. Aharon, David Y. & Demir, Ender, 2022. "NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 47(PA).
    9. Qureshi, Saba & Aftab, Muhammad & Bouri, Elie & Saeed, Tareq, 2020. "Dynamic interdependence of cryptocurrency markets: An analysis across time and frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    12. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    13. Matthieu Nadini & Laura Alessandretti & Flavio Di Giacinto & Mauro Martino & Luca Maria Aiello & Andrea Baronchelli, 2021. "Mapping the NFT revolution: market trends, trade networks and visual features," Papers 2106.00647, arXiv.org, revised Sep 2021.
    14. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    15. Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
    16. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    17. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    18. Yizhi Wang & Florian Horky & Lennart J. Baals & Brian M. Lucey & Samuel A. Vigne, 2022. "Bubbles all the way down? Detecting and date-stamping bubble behaviours in NFT and DeFi markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 20(4), pages 415-436, October.
    19. Wang, Yizhi, 2022. "Volatility spillovers across NFTs news attention and financial markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Karim, Sitara & Lucey, Brian M. & Naeem, Muhammad Abubakr & Uddin, Gazi Salah, 2022. "Examining the interrelatedness of NFTs, DeFi tokens and cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PB).
    21. Francis X. Diebold & Til Schuermann & John D. Stroughair, 1998. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Center for Financial Institutions Working Papers 98-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    22. Umar, Zaghum & Gubareva, Mariya & Teplova, Tamara & Tran, Dang K., 2022. "Covid-19 impact on NFTs and major asset classes interrelations: Insights from the wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 47(PB).
    23. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    24. Dowling, Michael, 2022. "Fertile LAND: Pricing non-fungible tokens," Finance Research Letters, Elsevier, vol. 44(C).
    25. Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
    26. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    27. Dowling, Michael, 2022. "Is non-fungible token pricing driven by cryptocurrencies?," Finance Research Letters, Elsevier, vol. 44(C).
    28. Shahzad, Syed Jawad Hussain & Anas, Muhammad & Bouri, Elie, 2022. "Price explosiveness in cryptocurrencies and Elon Musk's tweets," Finance Research Letters, Elsevier, vol. 47(PB).
    29. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    30. Yousaf, Imran & Pham, Linh & Goodell, John W., 2023. "The connectedness between meme tokens, meme stocks, and other asset classes: Evidence from a quantile connectedness approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    31. Thompson, James R. & Wilson, James R., 2016. "Multifractal detrended fluctuation analysis: Practical applications to financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 126(C), pages 63-88.
    32. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    33. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    34. Fernandes, Leonardo H.S. & Bouri, Elie & Silva, José W.L. & Bejan, Lucian & de Araujo, Fernando H.A., 2022. "The resilience of cryptocurrency market efficiency to COVID-19 shock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    35. A. Abhyankar & L. S. Copeland & W. Wong, 1995. "Moment condition failure in high frequency financial data: evidence from the S&P 500," Applied Economics Letters, Taylor & Francis Journals, vol. 2(8), pages 288-290.
    36. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    37. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Kakinaka, Shinji & Umeno, Ken, 2022. "Asymmetric volatility dynamics in cryptocurrency markets on multi-time scales," Research in International Business and Finance, Elsevier, vol. 62(C).
    3. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    4. Aharon, David Y. & Butt, Hassan Anjum & Jaffri, Ali & Nichols, Brian, 2023. "Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks," International Review of Financial Analysis, Elsevier, vol. 87(C).
    5. Syuhada, Khreshna & Hakim, Arief & Suprijanto, Djoko & Muchtadi-Alamsyah, Intan & Arbi, Lukman, 2022. "Is Tether a safe haven of safe haven amid COVID-19? An assessment against Bitcoin and oil using improved measures of risk," Resources Policy, Elsevier, vol. 79(C).
    6. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    7. Bao, Te & Ma, Mengzhong & Wen, Yonggang, 2023. "Herding in the non-fungible token (NFT) market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    8. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    9. Ghosh, Indranil & Alfaro-Cortés, Esteban & Gámez, Matías & García-Rubio, Noelia, 2023. "Prediction and interpretation of daily NFT and DeFi prices dynamics: Inspection through ensemble machine learning & XAI," International Review of Financial Analysis, Elsevier, vol. 87(C).
    10. Ghazani, Majid Mirzaee & Khosravi, Reza, 2020. "Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    11. Wang, Jying-Nan & Lee, Yen-Hsien & Liu, Hung-Chun & Hsu, Yuan-Teng, 2023. "Dissecting returns of non-fungible tokens (NFTs): Evidence from CryptoPunks," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    12. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    13. Umar, Zaghum & Usman, Muhammad & Choi, Sun-Yong & Rice, John, 2023. "Diversification benefits of NFTs for conventional asset investors: Evidence from CoVaR with higher moments and optimal hedge ratios," Research in International Business and Finance, Elsevier, vol. 65(C).
    14. José Antonio Núñez-Mora & Mario Iván Contreras-Valdez & Roberto Joaquín Santillán-Salgado, 2023. "Risk Premium of Bitcoin and Ethereum during the COVID-19 and Non-COVID-19 Periods: A High-Frequency Approach," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
    15. Horky, Florian & Rachel, Carolina & Fidrmuc, Jarko, 2022. "Price determinants of non-fungible tokens in the digital art market," Finance Research Letters, Elsevier, vol. 48(C).
    16. Qiao, Xingzhi & Zhu, Huiming & Tang, Yiding & Peng, Cheng, 2023. "Time-frequency extreme risk spillover network of cryptocurrency coins, DeFi tokens and NFTs," Finance Research Letters, Elsevier, vol. 51(C).
    17. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Dynamic dependence and predictability between volume and return of Non-Fungible Tokens (NFTs): The roles of market factors and geopolitical risks," Finance Research Letters, Elsevier, vol. 50(C).
    18. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Nedved, Martin & Kristoufek, Ladislav, 2023. "Safe havens for Bitcoin," Finance Research Letters, Elsevier, vol. 51(C).
    20. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.

    More about this item

    Keywords

    Non-fungible token (NFT); Bitcoin and cryptocurrencies; Fat tails; GARCH-models; Asymmetric volatility; Long memory;
    All these keywords.

    JEL classification:

    • B16 - Schools of Economic Thought and Methodology - - History of Economic Thought through 1925 - - - Quantitative and Mathematical
    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:65:y:2023:i:c:s0275531923000715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.