IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i3d10.1007_s10668-022-02122-y.html
   My bibliography  Save this article

Impact of fossil fuel transition and population expansion on economic growth

Author

Listed:
  • Faraz Farhidi

    (Georgia State University)

Abstract

The existing works in endogenous growth have focused on technology and rarely on population impacts. In contrast, the research on environmental degradation caused by fossil fuel utilization has relied mostly on exogenous technology and population growth. Building upon the previous literature, I propose a dynamic growth model that allows the interaction between an economy and energy consumption of renewable and nonrenewable and the transitional path from one to another. I also allow endogenous population growth, where the population is affected by living standards and industrialization and indirectly natural resources through production, considering the trade-off between nonrenewable energy reserves and renewable resources. By creating a feedback loop from the population to the level of industrialization and GDP in this setup, GDP per capita’s growth rate is lower under endogenous population scenario relative to exogenous population growth. This particular outcome conveys that many projections for future energy use might overestimate our energy use, hence the economic and environmental costs. Firms utilize nonrenewable energy more intensively in a decentralized model since they do not fully internalize the negative externalities that arise from using nonrenewable energy, unlike the social planner approach. Imposing carbon-tax elements on the energy producers’ profit would accelerate clean energy adaptation and sustain the fossil fuel resources for a more extended period while increasing the total welfare by 3%. It would also increase the individuals’ long-term total consumption.

Suggested Citation

  • Faraz Farhidi, 2023. "Impact of fossil fuel transition and population expansion on economic growth," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2571-2609, March.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02122-y
    DOI: 10.1007/s10668-022-02122-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02122-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02122-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Gary S. Becker & Kevin M. Murphy & Robert Tamura, 1994. "Human Capital, Fertility, and Economic Growth," NBER Chapters, in: Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education, Third Edition, pages 323-350, National Bureau of Economic Research, Inc.
    4. John Hassler & Per Krusell, 2012. "Economics And Climate Change: Integrated Assessment In A Multi-Region World," Journal of the European Economic Association, European Economic Association, vol. 10(5), pages 974-1000, October.
    5. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    6. Lee, Myung-Kyoon, 2005. "Reviewing tax system and its reform plan for the fuel market in South Korea," Energy Policy, Elsevier, vol. 33(4), pages 475-482, March.
    7. Stiglitz, Joseph E, 1976. "Monopoly and the Rate of Extraction of Exhaustible Resources," American Economic Review, American Economic Association, vol. 66(4), pages 655-661, September.
    8. Farhidi, Faraz & Isfahani, Rahim & Emadzadeh, Mostafa, 2015. "Ideas, increasing return to scale, and economic growth: an application for Iran," MPRA Paper 64158, University Library of Munich, Germany.
    9. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    10. Barro, Robert J & Becker, Gary S, 1989. "Fertility Choice in a Model of Economic Growth," Econometrica, Econometric Society, vol. 57(2), pages 481-501, March.
    11. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    12. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    13. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    14. Charles I. Jones, 2002. "Sources of U.S. Economic Growth in a World of Ideas," American Economic Review, American Economic Association, vol. 92(1), pages 220-239, March.
    15. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    16. Munir Ahmad & Rana Ejaz Ali Khan, 2019. "Does Demographic Transition with Human Capital Dynamics Matter for Economic Growth? A Dynamic Panel Data Approach to GMM," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 753-772, April.
    17. John Hartwick, 1977. "Intergenerational Equity and the Investment of Rents from Exhaustible Resources in a Two Sector Model," Working Paper 281, Economics Department, Queen's University.
    18. Krutilla, Kerry & Reuveny, Rafael, 2006. "The systems dynamics of endogenous population growth in a renewable resource-based growth model," Ecological Economics, Elsevier, vol. 56(2), pages 256-267, February.
    19. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    20. Grossman, Gene M. & Helpman, Elhanan, 1991. "Trade, knowledge spillovers, and growth," European Economic Review, Elsevier, vol. 35(2-3), pages 517-526, April.
    21. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    22. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    23. Ehrlich, Isaac & Lui, Francis, 1997. "The problem of population and growth: A review of the literature from Malthus to contemporary models of endogenous population and endogenous growth," Journal of Economic Dynamics and Control, Elsevier, vol. 21(1), pages 205-242, January.
    24. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    25. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    26. Michael Kremer, 1993. "Population Growth and Technological Change: One Million B.C. to 1990," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 681-716.
    27. Kummel, Reiner & Henn, Julian & Lindenberger, Dietmar, 2002. "Capital, labor, energy and creativity: modeling innovation diffusion," Structural Change and Economic Dynamics, Elsevier, vol. 13(4), pages 415-433, December.
    28. Gary S. Becker, 1994. "Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education, Third Edition," NBER Books, National Bureau of Economic Research, Inc, number beck94-1, May.
    29. Dasgupta, Partha & Mã„Ler, Karl-Gã–Ran, 2000. "Net national product, wealth, and social well-being," Environment and Development Economics, Cambridge University Press, vol. 5(1), pages 69-93, February.
    30. Farhidi, Faraz & Khiabani, Vahid, 2021. "The impact of social norms on cross-state energy regime changes," Energy Policy, Elsevier, vol. 154(C).
    31. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    32. Li, Chuan-Zhong & Lofgren, Karl-Gustaf, 2000. "Renewable Resources and Economic Sustainability: A Dynamic Analysis with Heterogeneous Time Preferences," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 236-250, November.
    33. Wang, Qiang & Wang, Lili, 2020. "Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis," Energy, Elsevier, vol. 207(C).
    34. Alessandro Cigno, 1981. "Growth with Exhaustible Resources and Endogenous Population," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 48(2), pages 281-287.
    35. Howitt, Peter & Aghion, Philippe, 1998. "Capital Accumulation and Innovation as Complementary Factors in Long-Run Growth," Journal of Economic Growth, Springer, vol. 3(2), pages 111-130, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizhan Cao & Zhongying Qi, 2017. "Theoretical Explanations for the Inverted-U Change of Historical Energy Intensity," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    2. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    4. Frederic Tournemaine & Pongsak Luangaram, 2012. "R&D, human capital, fertility, and growth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 25(3), pages 923-953, July.
    5. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2020. "Does Renewable Energy Technologies and Poverty Affect the Sustainable Growth in Emerging Countries?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 865-887, September.
    6. Oded Galor & David N. Weil, 1999. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," Working Papers 99-35, Brown University, Department of Economics.
    7. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    8. Boucekkine, R. & Martínez, B. & Ruiz-Tamarit, J.R., 2013. "Growth vs. level effect of population change on economic development: An inspection into human-capital-related mechanisms," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 312-334.
    9. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    10. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Charles I. Jones & Paul M. Romer, 2010. "The New Kaldor Facts: Ideas, Institutions, Population, and Human Capital," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 224-245, January.
    12. repec:ebl:ecbull:v:15:y:2007:i:8:p:1-7 is not listed on IDEAS
    13. Jones, C.I., 2016. "The Facts of Economic Growth," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 3-69, Elsevier.
    14. Banerjee, Abhijit & Qian, Nancy & Meng, Xin & Porzio, Tommaso, 2014. "Aggregate Fertility and Household Savings: A General Equilibrium Analysis using Micro Data," CEPR Discussion Papers 9935, C.E.P.R. Discussion Papers.
    15. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.
    16. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    17. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    18. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    19. Alberto Bucci, 2010. "Population in Factor Accumulation-based Growth," Rivista italiana degli economisti, Società editrice il Mulino, issue 1, pages 33-68.
    20. Diana Dimitrova, 2018. "The 2018 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 98-152.
    21. Blackburn, Keith & Cipriani, Giam Pietro, 2005. "Intergenerational transfers and demographic transition," Journal of Development Economics, Elsevier, vol. 78(1), pages 191-214, October.

    More about this item

    Keywords

    Endogenous growth; Environmental degradation; Fossil-fuel energy; Population growth; Renewable energy;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:3:d:10.1007_s10668-022-02122-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.