IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i6d10.1007_s10668-019-00446-w.html
   My bibliography  Save this article

Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future

Author

Listed:
  • Elias Ganivet

Abstract

Nowadays, human activities are causing an important collapse in global biodiversity while also affecting the global climate considerably. Despite historical agreements on both biodiversity conservation and climate change, humanity keeps changing the face of the planet at an increasing rate. An undisputed factor in global change is the excessive and growing human consumption. On the other hand, it seems that linking humanity’s environmental impact with population growth has been quite controversial in the international debate, as if, somehow, biodiversity loss and climate change were unconnected to it. To this purpose, this paper reviews (1) the impacts of continuing human population growth on global biodiversity and climate through the examples of food and energy production, (2) changing perceptions about population growth and (3) the potential solutions that could be used to address this issue. Despite not the only factor, the research reviewed in this paper highlights that continuing population growth plays a substantial global role in the destruction of biodiversity and in climate change, and this role urgently needs more attention in scientific, policy and public circles. Both unsustainable population levels and excessive consumption are part of the equation and must be addressed concurrently in developing and developed countries. Several non-coercive strategies are possible to address the population question, mostly through access to education and contraception, in order to empower women through the basic human right to have children by choice. In any case, although limiting population growth may not be the only solution required to fix current environmental problems, ignoring it is likely to hinder any ecologically sustainable future.

Suggested Citation

  • Elias Ganivet, 2020. "Growth in human population and consumption both need to be addressed to reach an ecologically sustainable future," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4979-4998, August.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00446-w
    DOI: 10.1007/s10668-019-00446-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00446-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00446-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Marian R. Chertow, 2000. "The IPAT Equation and Its Variants," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 13-29, October.
    3. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    5. Ronald Lee & A. Mason & E. Amporfu & C.-B. An & L. R. Bixby & J. Bravo & M. Bucheli & Q. Chen & P. Comelatto & D. Coy & Hippolyte d'Albis & G. Donehower & L. Dramani & A. Furnkranz-Prskawetz & R. I. G, 2014. "Is low fertility really a problem? Population aging, dependency, and consumption," Post-Print hal-01075298, HAL.
    6. Hansen, James & Gale, Fred, 2014. "China in the Next Decade: Rising Meat Demand and Growing Imports of Feed," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 03, pages 1-1, April.
    7. Jason Clay, 2011. "Freeze the footprint of food," Nature, Nature, vol. 475(7356), pages 287-289, July.
    8. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    9. Luke Kemp, 2017. "Limiting the climate impact of the Trump administration," Palgrave Communications, Palgrave Macmillan, vol. 3(1), pages 1-5, December.
    10. William J. Ripple & Pete Smith & Helmut Haberl & Stephen A. Montzka & Clive McAlpine & Douglas H. Boucher, 2014. "Ruminants, climate change and climate policy," Nature Climate Change, Nature, vol. 4(1), pages 2-5, January.
    11. Hulme,Mike, 2009. "Why We Disagree about Climate Change," Cambridge Books, Cambridge University Press, number 9780521727327.
    12. Adrian Muller & Christian Schader & Nadia El-Hage Scialabba & Judith Brüggemann & Anne Isensee & Karl-Heinz Erb & Pete Smith & Peter Klocke & Florian Leiber & Matthias Stolze & Urs Niggli, 2017. "Strategies for feeding the world more sustainably with organic agriculture," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    13. World Bank, 2011. "Getting to Equal," World Bank Publications - Reports 27792, The World Bank Group.
    14. Mason, I.G. & Page, S.C. & Williamson, A.G., 2013. "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand," Energy Policy, Elsevier, vol. 60(C), pages 324-333.
    15. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    16. Sean L. Maxwell & Richard A. Fuller & Thomas M. Brooks & James E. M. Watson, 2016. "Biodiversity: The ravages of guns, nets and bulldozers," Nature, Nature, vol. 536(7615), pages 143-145, August.
    17. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    18. Sinding, S.W., 2000. "The great population debates: How relevant are they for the 21st century?," American Journal of Public Health, American Public Health Association, vol. 90(12), pages 1841-1845.
    19. Hulme,Mike, 2009. "Why We Disagree about Climate Change," Cambridge Books, Cambridge University Press, number 9780521898690.
    20. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    21. Nathan J. Cook & Tara Grillos & Krister P. Andersson, 2019. "Gender quotas increase the equality and effectiveness of climate policy interventions," Nature Climate Change, Nature, vol. 9(4), pages 330-334, April.
    22. James E. M. Watson & Oscar Venter & Jasmine Lee & Kendall R. Jones & John G. Robinson & Hugh P. Possingham & James R. Allan, 2018. "Protect the last of the wild," Nature, Nature, vol. 563(7729), pages 27-30, November.
    23. John Bongaarts, 2016. "Development: Slow down population growth," Nature, Nature, vol. 530(7591), pages 409-412, February.
    24. A. Parodi & A. Leip & I. J. M. Boer & P. M. Slegers & F. Ziegler & E. H. M. Temme & M. Herrero & H. Tuomisto & H. Valin & C. E. Middelaar & J. J. A. Loon & H. H. E. Zanten, 2018. "The potential of future foods for sustainable and healthy diets," Nature Sustainability, Nature, vol. 1(12), pages 782-789, December.
    25. Tom Wigley, 2011. "Coal to gas: the influence of methane leakage," Climatic Change, Springer, vol. 108(3), pages 601-608, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian Woźniak & Krzysztof Kud & Aleksandra Badora & Leszek Woźniak, 2022. "Electricity Production and Consumption Perspectives in the Opinion of the Youth of South-Eastern Poland," Energies, MDPI, vol. 15(13), pages 1-20, June.
    2. Nandagiri, Rishita, 2021. "What’s so troubling about ‘voluntary’ family planning anyway? A feminist perspective," LSE Research Online Documents on Economics 112535, London School of Economics and Political Science, LSE Library.
    3. Balali, Amirhossein & Yunusa-Kaltungo, Akilu & Edwards, Rodger, 2023. "A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    2. Barry W. Brook & Tom Blees & Tom M. L. Wigley & Sanghyun Hong, 2018. "Silver Buckshot or Bullet: Is a Future “Energy Mix” Necessary?," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    3. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    4. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    5. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2017. "Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1131-1146.
    6. Victoria, Marta & Gallego-Castillo, Cristobal, 2019. "Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030)," Applied Energy, Elsevier, vol. 233, pages 674-690.
    7. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    8. Marian Woźniak & Krzysztof Kud & Aleksandra Badora & Leszek Woźniak, 2022. "Electricity Production and Consumption Perspectives in the Opinion of the Youth of South-Eastern Poland," Energies, MDPI, vol. 15(13), pages 1-20, June.
    9. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    10. Natalie Slawinski & Jonatan Pinkse & Timo Busch & Subhabrata Bobby Banerjeed, 2014. "The role of short-termism and uncertainty in organizational inaction on climate change: multilevel framework," Working Papers hal-00961226, HAL.
    11. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    12. Tammy Tabe, 2019. "Climate Change Migration and Displacement: Learning from Past Relocations in the Pacific," Social Sciences, MDPI, vol. 8(7), pages 1-18, July.
    13. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    14. Felix J. Formanski & Marcel M. Pein & David D. Loschelder & John-Oliver Engler & Onno Husen & Johann M. Majer, 2022. "Tipping points ahead? How laypeople respond to linear versus nonlinear climate change predictions," Climatic Change, Springer, vol. 175(1), pages 1-20, November.
    15. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    16. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    17. Kate Elizabeth Gannon, Mike Hulme, 2017. "Geoengineering at the ‘edge of the world’: exploring perceptions of ocean fertilization through the Haida Salmon Restoration Corporation," GRI Working Papers 280, Grantham Research Institute on Climate Change and the Environment.
    18. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    19. Markus Dressel, 2022. "Models of science and society: transcending the antagonism," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    20. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:6:d:10.1007_s10668-019-00446-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.