IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v42y2019i2d10.1007_s10203-019-00232-3.html
   My bibliography  Save this article

Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods

Author

Listed:
  • Julien Hok

    (Crédit Agricole CIB)

  • Shih-Hau Tan

    (Cuemacro)

Abstract

Long-maturity options or a wide class of hybrid products are evaluated using a local volatility-type modelling for the asset price S(t) with a stochastic interest rate r(t). The calibration of the local volatility function is challenging and time-consuming because of the multi-dimensional nature of the problem. A key requirement of any equity hybrid derivatives pricing model is the ability to rapidly and accurately calibrate to vanilla option prices. In this paper, we develop a calibration technique based on a partial differential equation (PDE) approach which allows an accurate calibration and provides an efficient implementation algorithm. The essential idea is based on solving the derived forward equation satisfied by $$P(t, S, r) \mathcal {Z}(t, S, r)$$P(t,S,r)Z(t,S,r), where P(t, S, r) represents the risk-neutral probability density of (S(t), r(t)) and $$\mathcal {Z}(t, S, r)$$Z(t,S,r) the projection of the stochastic discounting factor in the state variables (S(t), r(t)). The solution provides effective and sufficient information for the calibration and pricing. The PDE solver is constructed by using ADI (alternative direction implicit) method based on an extension of the Peaceman–Rachford scheme. Furthermore, an efficient algorithm to compute all the corrective terms in the local volatility function due to the stochastic interest rates is proposed by using the PDE solutions and grid points. It reduces by one order the computations costs and then allows to speed up significantly the calibration procedure. Different numerical experiments are examined and compared to demonstrate the results of our theoretical analysis.

Suggested Citation

  • Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
  • Handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00232-3
    DOI: 10.1007/s10203-019-00232-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-019-00232-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-019-00232-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Benhamou & E. Gobet & M. Miri, 2012. "Analytical formulas for a local volatility model with stochastic rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 185-198, September.
    2. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    3. E. Benhamou & E. Gobet & M. Miri, 2009. "Smart expansion and fast calibration for jump diffusions," Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
    4. Emmanuel Gobet & Julien Hok, 2014. "Expansion Formulas For Bivariate Payoffs With Application To Best-Of Options On Equity And Inflation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-32.
    5. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    6. Andrey Itkin, 2017. "Modelling stochastic skew of FX options using SLV models with stochastic spot/vol correlation and correlated jumps," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(6), pages 485-519, November.
    7. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    8. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    9. Griselda Deelstra & Gr�gory Ray�e, 2013. "Local Volatility Pricing Models for Long-Dated FX Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(4), pages 380-402, September.
    10. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    11. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    12. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    2. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
    2. Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-43, March.
    3. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
    4. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    5. Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
    6. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    9. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    10. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
    11. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    12. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    13. Y. Wang & H. Yin & L. Qi, 2004. "No-Arbitrage Interpolation of the Option Price Function and Its Reformulation," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 627-649, March.
    14. Mathias Barkhagen & Jörgen Blomvall, 2016. "Modeling and evaluation of the option book hedging problem using stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 259-273, February.
    15. Bo-Young Chang & Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2011. "Option-Implied Measures of Equity Risk," Review of Finance, European Finance Association, vol. 16(2), pages 385-428.
    16. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    17. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    18. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    19. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.
    20. Carey, Alexander, 2008. "Natural volatility and option pricing," MPRA Paper 6709, University Library of Munich, Germany.

    More about this item

    Keywords

    Local volatility model; Stochastic interest rates; Hybrid; Calibration; Forward Fokker–Planck-type equation; Alternating direction implicit (ADI) method;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:42:y:2019:i:2:d:10.1007_s10203-019-00232-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.