IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v173y2022i3d10.1007_s10584-022-03413-z.html
   My bibliography  Save this article

Importing or self-dependent: energy transition in Beijing towards carbon neutrality and the air pollution reduction co-benefits

Author

Listed:
  • Jun Liu

    (University of Science and Technology Beijing)

  • Wenji Zhou

    (Renmin University of China)

  • Jing Yang

    (National Development and Reform Commission)

  • Hongtao Ren

    (East China University of Science and Technology)

  • Behnam Zakeri

    (International Institute for Applied Systems Analysis (IIASA)
    UCL Energy Institute, University College London
    Aalto University
    Aalborg University)

  • Dan Tong

    (Tsinghua University)

  • Ying Guo

    (Central South University)

  • Zbigniew Klimont

    (International Institute for Applied Systems Analysis (IIASA))

  • Tong Zhu

    (Peking University)

  • Xiaolong Tang

    (University of Science and Technology Beijing)

  • Honghong Yi

    (University of Science and Technology Beijing)

Abstract

Beijing has implemented air pollution control policies and transitioned its energy system with lower carbon emissions to tackle severe air pollution. However, further advancing to a carbon–neutral future necessitates comprehensive measures far beyond the air-quality-oriented policies. This study aims to explore and compare different transition strategies of the Beijing energy system to achieve carbon neutrality and assess the associated air pollution reduction co-benefits by using an integrated modelling framework consisting of an energy system model MESSAGEix-Beijing and an air quality assessment model GAINS. Three scenarios are developed, namely, baseline (BS), indigenous (IND), and imported electricity-dependent (EIMP). The two distinct low-carbon pathways differ in cost-optimal technological solutions and the associated impacts of air pollution reduction. Compared to the BS scenario, the IND and EIMP scenarios could reduce the carbon dioxide emissions in Beijing by 94 to 96% in 2050 and achieve substantial air pollution co-benefits. In the IND scenario, the NOx, SO2, and PM2.5 emissions would decrease by 50%, 84%, and 30% in 2050, respectively. Importing full electricity from other provinces, as indicated by the EIMP scenario, would achieve even higher emissions reduction for air pollutants. The results highlight the necessity for concerted regional development of adjacent provinces to avoid the spillover of carbon emissions and air pollution.

Suggested Citation

  • Jun Liu & Wenji Zhou & Jing Yang & Hongtao Ren & Behnam Zakeri & Dan Tong & Ying Guo & Zbigniew Klimont & Tong Zhu & Xiaolong Tang & Honghong Yi, 2022. "Importing or self-dependent: energy transition in Beijing towards carbon neutrality and the air pollution reduction co-benefits," Climatic Change, Springer, vol. 173(3), pages 1-24, August.
  • Handle: RePEc:spr:climat:v:173:y:2022:i:3:d:10.1007_s10584-022-03413-z
    DOI: 10.1007/s10584-022-03413-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03413-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03413-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    2. Toon Vandyck & Kimon Keramidas & Alban Kitous & Joseph V. Spadaro & Rita Van Dingenen & Mike Holland & Bert Saveyn, 2018. "Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    4. Luo, Shihua & Hu, Weihao & Liu, Wen & Xu, Xiao & Huang, Qi & Chen, Zhe & Lund, Henrik, 2021. "Transition pathways towards a deep decarbonization energy system—A case study in Sichuan, China," Applied Energy, Elsevier, vol. 302(C).
    5. Wenji Zhou & David L. McCollum & Oliver Fricko & Shinichiro Fujimori & Matthew Gidden & Fei Guo & Tomoko Hasegawa & Han Huang & Daniel Huppmann & Volker Krey & Changyi Liu & Simon Parkinson & Keywan R, 2020. "Decarbonization pathways and energy investment needs for developing Asia in line with ‘well below’ 2°C," Climate Policy, Taylor & Francis Journals, vol. 20(2), pages 234-245, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    2. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    3. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    5. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    6. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    7. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    8. Zohra Dradra & Chokri Abdennadher, 2023. "Modeling the effects of renewable energy on sustainable development: evidence from simultaneous equations models," Economic Change and Restructuring, Springer, vol. 56(4), pages 2111-2128, August.
    9. Dafermos, Yannis & Nikolaidi, Maria, 2021. "How can green differentiated capital requirements affect climate risks? A dynamic macrofinancial analysis," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Laura Cavalli & Mia Alibegovic & Edward Cruickshank & Luca Farnia & Ilenia G. Romani, 2023. "The impact of EU Structural Funds on the national sustainable development strategy: a methodological application," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 10(1), pages 52-69, December.
    11. Naoyuki Yoshino & Tim Schloesser & Farhad Taghizadeh‐Hesary, 2021. "Social funding of green financing: An application of distributed ledger technologies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6060-6073, October.
    12. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    13. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    14. Joelle Noailly; Roger Smeets, 2021. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," CIES Research Paper series 69-2021, Centre for International Environmental Studies, The Graduate Institute.
    15. Hayot Berk Saydaliev & Lee Chin, 2023. "Role of green financing and financial inclusion to develop the cleaner environment for macroeconomic stability: Inter-temporal analysis of ASEAN economies," Economic Change and Restructuring, Springer, vol. 56(6), pages 3839-3859, December.
    16. Roncoroni, Alan & Battiston, Stefano & Escobar-Farfán, Luis O.L. & Martinez-Jaramillo, Serafin, 2021. "Climate risk and financial stability in the network of banks and investment funds," Journal of Financial Stability, Elsevier, vol. 54(C).
    17. Mahmoud G. Hemeida & Ashraf M. Hemeida & Tomonobu Senjyu & Dina Osheba, 2022. "Renewable Energy Resources Technologies and Life Cycle Assessment: Review," Energies, MDPI, vol. 15(24), pages 1-36, December.
    18. Athar Ajaz Khan & János Abonyi, 2022. "Simulation of Sustainable Manufacturing Solutions: Tools for Enabling Circular Economy," Sustainability, MDPI, vol. 14(15), pages 1-40, August.
    19. Ottmar Edenhofer & Max Franks & Matthias Kalkuhl, 2021. "Pigou in the 21st Century: a tribute on the occasion of the 100th anniversary of the publication of The Economics of Welfare," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1090-1121, October.
    20. Pablo E. Carvajal & Asami Miketa & Nadeem Goussous & Pauline Fulcheri, 2022. "Best Practice in Government Use and Development of Long-Term Energy Transition Scenarios," Energies, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:173:y:2022:i:3:d:10.1007_s10584-022-03413-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.