IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i2d10.1007_s10584-020-02773-8.html
   My bibliography  Save this article

The interdependence between CO2 emissions, economic growth, renewable and non-renewable energies, and service development: evidence from 65 countries

Author

Listed:
  • Mehdi Ben Jebli

    (University of Jendouba
    Campus University of Manouba)

  • Montassar Kahia

    (Qassim University
    University of Tunis El Manar)

Abstract

This study examined the interdependence between CO2 emissions, economic growth, energy generation, and value-added service for a panel of 65 countries. An important contribution of this study is to explore the role of service sector development in the mitigation of pollutant emissions, considering renewable energy as a resource of production. The authors used the annual data of studied variables covering the period of 1980 to 2014 and utilized the vector autoregressive (VAR) model, Granger causality, and Toda–Yamamoto tests. The empirics of Granger causality suggest that there are strong bidirectional causalities between CO2 emissions and non-renewable energy, CO2 emissions and value-added service, non-renewable energy and value-added service, and unidirectional causality from CO2 emissions to renewable energy in the short-run. Furthermore, the empirics suggest that bidirectional causalities exist between the service sector toward CO2 emissions and value-added service toward non-renewable energy in the long-run. The findings of this study support the validity of an environmental Kuznets curve for the case of sample countries. The study proposed that increasing renewable energy rates could be good plans to stimulate service activities and decreasing non-renewable energy rates will reduce pollutant emissions.

Suggested Citation

  • Mehdi Ben Jebli & Montassar Kahia, 2020. "The interdependence between CO2 emissions, economic growth, renewable and non-renewable energies, and service development: evidence from 65 countries," Climatic Change, Springer, vol. 162(2), pages 193-212, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02773-8
    DOI: 10.1007/s10584-020-02773-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02773-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02773-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taber Allison & Terry Root & Peter Frumhoff, 2014. "Thinking globally and siting locally – renewable energy and biodiversity in a rapidly warming world," Climatic Change, Springer, vol. 126(1), pages 1-6, September.
    2. Farhani, Sahbi & Chaibi, Anissa & Rault, Christophe, 2014. "CO2 emissions, output, energy consumption, and trade in Tunisia," Economic Modelling, Elsevier, vol. 38(C), pages 426-434.
    3. Halicioglu, Ferda, 2009. "An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1156-1164, March.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    5. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    6. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    7. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    8. Cosimo Magazzino, 2017. "The relationship among economic growth, CO2 emissions, and energy use in the APEC countries: a panel VAR approach," Environment Systems and Decisions, Springer, vol. 37(3), pages 353-366, September.
    9. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521828284.
    10. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    11. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    12. Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
    13. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    14. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    15. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    16. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    17. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    18. repec:ipg:wpaper:201415 is not listed on IDEAS
    19. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    20. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    21. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    22. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    23. Cerdeira Bento, João Paulo & Moutinho, Victor, 2016. "CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 142-155.
    24. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    25. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    26. Nelson C. Mark & Donggyu Sul, 2003. "Cointegration Vector Estimation by Panel DOLS and Long‐run Money Demand," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 655-680, December.
    27. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    28. Dinda, Soumyananda, 2005. "A theoretical basis for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 53(3), pages 403-413, May.
    29. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    30. Ben Jebli, Mehdi & Belloumi, Mounir, 2017. "Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 820-829.
    31. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    32. Kahia, Montassar & Ben Aïssa, Mohamed Safouane & Charfeddine, Lanouar, 2016. "Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs)," Energy, Elsevier, vol. 116(P1), pages 102-115.
    33. Peter Pedroni, 2001. "Purchasing Power Parity Tests In Cointegrated Panels," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 727-731, November.
    34. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    35. repec:ipg:wpaper:2014-582 is not listed on IDEAS
    36. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    37. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    38. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    39. Al-mulali, Usama & Tang, Chor Foon & Ozturk, Ilhan, 2015. "Estimating the Environment Kuznets Curve hypothesis: Evidence from Latin America and the Caribbean countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 918-924.
    40. Sharif, Arshian & Raza, Syed Ali & Ozturk, Ilhan & Afshan, Sahar, 2019. "The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations," Renewable Energy, Elsevier, vol. 133(C), pages 685-691.
    41. Rafael E. De Hoyos & Vasilis Sarafidis, 2006. "Testing for cross-sectional dependence in panel-data models," Stata Journal, StataCorp LP, vol. 6(4), pages 482-496, December.
    42. Westerlund, Joakim & Thuraisamy, Kannan & Sharma, Susan, 2015. "On the use of panel cointegration tests in energy economics," Energy Economics, Elsevier, vol. 50(C), pages 359-363.
    43. Nektarios Aslanidis & Susana Iranzo, 2009. "Environment and development: is there a Kuznets curve for CO2 emissions?," Applied Economics, Taylor & Francis Journals, vol. 41(6), pages 803-810.
    44. Frees,Edward W., 2004. "Longitudinal and Panel Data," Cambridge Books, Cambridge University Press, number 9780521535380.
    45. Salim, Ruhul A. & Rafiq, Shuddhasattwa, 2012. "Why do some emerging economies proactively accelerate the adoption of renewable energy?," Energy Economics, Elsevier, vol. 34(4), pages 1051-1057.
    46. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    47. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muntasir Murshed & Mohamed Elheddad & Rizwan Ahmed & Mohga Bassim & Ei Thuzar Than, 2022. "Foreign Direct Investments, Renewable Electricity Output, and Ecological Footprints: Do Financial Globalization Facilitate Renewable Energy Transition and Environmental Welfare in Bangladesh?," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 33-78, March.
    2. Gideon Kwaku Minua Ampofo & Jinhua Cheng & Edwin Twum Ayimadu & Daniel Akwasi Asante, 2021. "Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries," Energies, MDPI, vol. 14(2), pages 1-29, January.
    3. Imen Chaouali & Mehdi Ben Jebli & Wadim Strielkowski, 2023. "How renewable energy and service growth influence environmental quality: Evidence from a sustainable development perspective," Natural Resources Forum, Blackwell Publishing, vol. 47(2), pages 257-275, May.
    4. Wilmer Martínez-Rivera & Eliana R. González-Molano & Edgar Caicedo-García, 2023. "Forecasting Inflation from Disaggregated Data: The Colombian case," Borradores de Economia 1251, Banco de la Republica de Colombia.
    5. Kizito Uyi Ehigiamusoe & Suresh Ramakrishnan & Hooi Hooi Lean & Sotheeswari Somasundram, 2023. "Role of Energy Consumption on the Environmental Impact of Sectoral Growth in Malaysia," SAGE Open, , vol. 13(3), pages 21582440231, July.
    6. Héctor F. Salazar-Núñez & Francisco Venegas-Martínez & José Antonio Lozano-Díez, 2022. "Assessing the interdependence among renewable and non-renewable energies, economic growth, and CO2 emissions in Mexico," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12850-12866, November.
    7. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).
    8. Ortega-Ruiz, G. & Mena-Nieto, A. & Golpe, A.A. & García-Ramos, J.E., 2022. "CO2 emissions and causal relationships in the six largest world emitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Erdost Torun & Afife Duygu Ayhan Akdeniz & Erhan Demireli & Simon Grima, 2022. "Long-Term US Economic Growth and the Carbon Dioxide Emissions Nexus: A Wavelet-Based Approach," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    10. Juan David Alonso-Sanabria & Luis Fernando Melo-Velandia & Daniel Parra-Amado, 2023. "Connecting the Dots: Renewable Energy, Economic Growth, Reforestation, and Greenhouse Gas Emissions in Colombia," Borradores de Economia 1252, Banco de la Republica de Colombia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    2. Vural, Gulfer, 2020. "How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries?," Resources Policy, Elsevier, vol. 69(C).
    3. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    4. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    5. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    6. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    7. Awad, Atif, 2019. "Does economic integration damage or benefit the environment? Africa's experience," Energy Policy, Elsevier, vol. 132(C), pages 991-999.
    8. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    9. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    10. Liu, Xuyi & Zhang, Shun & Bae, Junghan, 2017. "The nexus of renewable energy-agriculture-environment in BRICS," Applied Energy, Elsevier, vol. 204(C), pages 489-496.
    11. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    12. Kahia, Montassar & Aïssa, Mohamed Safouane Ben & Lanouar, Charfeddine, 2017. "Renewable and non-renewable energy use - economic growth nexus: The case of MENA Net Oil Importing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 127-140.
    13. Jin, Taeyoung & Kim, Jinsoo, 2018. "What is better for mitigating carbon emissions – Renewable energy or nuclear energy? A panel data analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 464-471.
    14. Tiba, Sofien & Frikha, Mohamed, 2019. "The controversy of the resource curse and the environment in the SDGs background: The African context," Resources Policy, Elsevier, vol. 62(C), pages 437-452.
    15. Mirza, Faisal Mehmood & Sinha, Avik & Khan, Javeria Rehman & Kalugina, Olga A. & Zafar, Muhammad Wasif, 2022. "Impact of Energy Efficiency on CO2 Emissions: Empirical Evidence from Developing Countries," MPRA Paper 111923, University Library of Munich, Germany, revised 2022.
    16. Vo, Duc, 2019. "The Impact of Foreign Direct Investment on Environment Degradation: Evidence from Emerging Markets in Asia," MPRA Paper 103292, University Library of Munich, Germany.
    17. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    18. Ben Jebli, Mehdi & Ben Youssef, Slim & Ozturk, Ilhan, 2013. "The Environmental Kuznets Curve: The Role of Renewable and Non-Renewable Energy Consumption and Trade Openness," MPRA Paper 51672, University Library of Munich, Germany.
    19. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    20. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.

    More about this item

    Keywords

    Renewable energy; Value-added service; Carbon dioxide emissions; Vector error model; Granger causality;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • F64 - International Economics - - Economic Impacts of Globalization - - - Environment
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02773-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.