IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i1p121-143.html
   My bibliography  Save this article

Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model

Author

Listed:
  • Enrica Cian
  • Valentina Bosetti
  • Massimo Tavoni

Abstract

This paper examines the dynamics of innovation in low-carbon energy technologies distinguishing between research and development and technology diffusion as a response to alternative climate policies. We assess the implications of second-best policies that depart from the assumption of immediate and global participation and of full technology availability. The analysis highlights the heterogeneous effects of climate policy on different energy R&D programs and discusses the contribution of important determinants such as carbon price and policy stringency, policy credibility, policy and technological spillovers and absorptive capacity. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:1:p:121-143
    DOI: 10.1007/s10584-011-0320-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0320-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0320-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    3. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    4. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    5. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    6. Emanuele Massetti & Andrea Bastianin & Alice Favero, 2010. "Investments and Financial Flows Induced by Climate Mitigation Policies," Working Papers 2010.13, Fondazione Eni Enrico Mattei.
    7. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard & Claude Thonet, 2000. "Endogenous learning in world post-Kyoto scenarios: application of the POLES model under adaptive expectations," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 222-248.
    8. Valentina Bosetti & David G. Victor, 2011. "Politics and Economics of Second-Best Regulation of Greenhouse Gases: The Importance of Regulatory Credibility," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-24.
    9. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    10. Kypreos, Socrates, 2007. "A MERGE model with endogenous technological change and the cost of carbon stabilization," Energy Policy, Elsevier, vol. 35(11), pages 5327-5336, November.
    11. Blanford, Geoffrey J., 2009. "R&D investment strategy for climate change," Energy Economics, Elsevier, vol. 31(Supplemen), pages 27-36.
    12. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    13. Baker, Erin & Shittu, Ekundayo, 2006. "Profit-maximizing R&D in response to a random carbon tax," Resource and Energy Economics, Elsevier, vol. 28(2), pages 160-180, May.
    14. Matthieu Glachant & Antoine Dechezleprêtre & Ivan Hascic & Nick Johnstone & Yann Ménière, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Working Papers 2009.82, Fondazione Eni Enrico Mattei.
    15. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    16. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    17. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, January.
    19. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    20. Nemet, Gregory F., 2010. "Robust incentives and the design of a climate change governance regime," Energy Policy, Elsevier, vol. 38(11), pages 7216-7225, November.
    21. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    22. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    23. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    24. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    25. Enrica De Cian & Massimo Tavoni, 2010. "The Role of International Carbon Offsets in a Second-best Climate Policy: A Numerical Evaluation," Working Papers 2010.33, Fondazione Eni Enrico Mattei.
    26. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    27. David Popp & Tamara Hafner & Nick Johnstone, 2007. "Policy vs. Consumer Pressure: Innovation and Diffusion of Alternative Bleaching Technologies in the Pulp Industry," NBER Working Papers 13439, National Bureau of Economic Research, Inc.
    28. Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
    29. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    30. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    31. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    32. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    33. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    34. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    35. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    36. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    37. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    2. Enrica De Cian & Fabio Sferra & Massimo Tavoni, 2013. "The Influence of Economic Growth, Population, and Fossil Fuel Scarcity on Energy Investments," Working Papers 2013.59, Fondazione Eni Enrico Mattei.
    3. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    4. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.
    5. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    6. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    7. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    8. Antoine Mandel & Solmaria Halleck Vega & Dan-Xia Wang, 2020. "The contribution of technological diffusion to climate change mitigation: a network-based approach," Climatic Change, Springer, vol. 160(4), pages 609-620, June.
    9. Karoline S. Rogge & Elisabeth Dütschke, 2017. "Exploring Perceptions of the Credibility of Policy Mixes: The Case of German Manufacturers of Renewable Power Generation Technologies," SPRU Working Paper Series 2017-23, SPRU - Science Policy Research Unit, University of Sussex Business School.
    10. Ottmar Edenhofer & Carlo Carraro & Jean-Charles Hourcade, 2012. "On the economics of decarbonization in an imperfect world," Climatic Change, Springer, vol. 114(1), pages 1-8, September.
    11. Gunnar Luderer & Enrica DeCian & Jean-Charles Hourcade & Marian Leimbach & Henri Waisman & Ottmar Edenhofer, 2012. "On the regional distribution of mitigation costs in a global cap-and-trade regime," Climatic Change, Springer, vol. 114(1), pages 59-78, September.
    12. Gunter Stephan & Georg Müller-Fürstenberger, 2014. "Global Warming, Technological Change and Trade in Carbon Energy: Challenge or Threat?," Discussion Papers of DIW Berlin 1397, DIW Berlin, German Institute for Economic Research.
    13. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    14. Gunter Stephan & Georg Müller-Fürstenberger, 2015. "Global Warming, Technological Change and Trade in Carbon Energy: Challenge or Threat?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(4), pages 791-809, December.
    15. Hof, Andries F. & Carrara, Samuel & De Cian, Enrica & Pfluger, Benjamin & van Sluisveld, Mariësse A.E. & de Boer, Harmen Sytze & van Vuuren, Detlef P., 2020. "From global to national scenarios: Bridging different models to explore power generation decarbonisation based on insights from socio-technical transition case studies," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    2. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    3. Wei Jin, 2012. "Can China Harness Globalization to Reap Carbon Savings? Modeling International Technology Diffusion in a Multi-region Framework," CAMA Working Papers 2012-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    6. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    7. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    8. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    9. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    10. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    11. Leimbach, Marian & Baumstark, Lavinia, 2010. "The impact of capital trade and technological spillovers on climate policies," Ecological Economics, Elsevier, vol. 69(12), pages 2341-2355, October.
    12. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    13. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    14. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    15. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    16. Elena Verdolini & Valentina Bosetti, 2017. "Environmental Policy and the International Diffusion of Cleaner Energy Technologies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 497-536, March.
    17. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    18. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    19. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    20. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:1:p:121-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.