IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v6y2021i3d10.1007_s41247-021-00089-4.html
   My bibliography  Save this article

Energy Efficiency, Monetary Costs, and Sustainability of Brazilian Rainfed and Irrigated Rice Cropping Systems

Author

Listed:
  • Elen Presotto

    (Universidade Federal do Rio Grande do Sul - UFRGS)

  • Gabrielli Martinelli

    (Federal University of Grande Dourados (UFGD))

  • Gabriela Allegretti

    (Universidade Federal do Rio Grande do Sul - UFRGS)

  • Edson Talamini

    (Universidade Federal do Rio Grande do Sul - UFRGS
    Universidade Federal do Rio Grande do Sul – UFRGS)

Abstract

Increasing resource use efficiency to meet the world demand for food is among the greatest challenges for the sustainability of agricultural systems. Appropriate biophysical characteristics, resource renewability, and production costs are decisive for the biophysical and economic persistence of agricultural systems. In Brazil, rice is grown in flooding-irrigated (predominantly in the South) and rainfed (other regions) systems. The present study measured the energy efficiency, monetary costs, and the sustainability of characteristic examples of these two types of agroecosystems. We calculated indices of energy flow analysis, discriminating between energy fractions derived from renewable and non-renewable inputs. The irrigated system had more than double the yield, but an energy return on investment (EROI, 2.03:1) and energy productivity (EP, 0.13 kg MJ−1) that were lower than those of the rainfed system (2.86:1 and 0.19 kg MJ−1, respectively). However, the renewable EROI (EROIr) showed that the irrigated system is more sustainable: 364:1 vs 5:1 by our measure. We propose using the energy efficiency cost (EEC) and energy exchange ratio (EnER), and their renewable (R EnER) and non-renewable (NR EnER) fractions to assess the monetary costs of energy efficiency. By these criteria, irrigated systems are less efficient economically, expending more energy to produce a monetary unit of paddy rice (33.87 MJ US$−1) than the rainfed system (24.03 MJ US$−1). The pricing system can underestimate renewable resources such as water for irrigation since the irrigated system’s NR EnER (21.09) was higher than the R EnER (12.78). Thus, the pricing system underestimates the biophysical sustainability of the agricultural systems.

Suggested Citation

  • Elen Presotto & Gabrielli Martinelli & Gabriela Allegretti & Edson Talamini, 2021. "Energy Efficiency, Monetary Costs, and Sustainability of Brazilian Rainfed and Irrigated Rice Cropping Systems," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-14, September.
  • Handle: RePEc:spr:bioerq:v:6:y:2021:i:3:d:10.1007_s41247-021-00089-4
    DOI: 10.1007/s41247-021-00089-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-021-00089-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-021-00089-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chou, Lichen & Dai, Jie & Qian, Xiaoyan & Karimipour, Aliakbar & Zheng, Xuping, 2021. "Achieving sustainable soil and water protection: The perspective of agricultural water price regulation on environmental protection," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Fix, Blair, 2019. "The Aggregation Problem: Implications for Ecological and Biophysical Economics," SocArXiv tfwju, Center for Open Science.
    3. Ali S. Pracha & Timothy A. Volk, 2011. "An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan," Sustainability, MDPI, vol. 3(12), pages 1-34, December.
    4. Fix, Blair, 2019. "The Aggregation Problem: Implications for Ecological and Biophysical Economics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(1), pages 1-15.
    5. Blair Fix, 2019. "The Aggregation Problem: Implications for Ecological and Biophysical Economics," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-15, March.
    6. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    7. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    8. Eskandari, Hamdollah & Attar, Sajjad, 2015. "Energy comparison of two rice cultivation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 666-671.
    9. Tello, E. & Galán, E. & Sacristán, V. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Padró, R. & Marco, I. & Moreno-Delgado, D., 2016. "Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès Count," Ecological Economics, Elsevier, vol. 121(C), pages 160-174.
    10. Kosemani, Babajide S. & Bamgboye, A. Isaac, 2020. "Energy input-output analysis of rice production in Nigeria," Energy, Elsevier, vol. 207(C).
    11. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    12. Nicholson, Charles F. & Stephens, Emma C. & Kopainsky, Birgit & Jones, Andrew D. & Parsons, David & Garrett, James, 2021. "Food security outcomes in agricultural systems models: Current status and recommended improvements," Agricultural Systems, Elsevier, vol. 188(C).
    13. Ramedani, Z. & Rafiee, S. & Heidari, M.D., 2011. "An investigation on energy consumption and sensitivity analysis of soybean production farms," Energy, Elsevier, vol. 36(11), pages 6340-6344.
    14. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    15. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    16. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    3. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).
    4. Blair Fix, 2019. "Dematerialization Through Services: Evaluating the Evidence," Biophysical Economics and Resource Quality, Springer, vol. 4(2), pages 1-17, June.
    5. Fix, Blair, 2020. "Economic Development and the Death of the Free Market," SocArXiv g86am, Center for Open Science.
    6. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    7. Bichler, Shimshon & Nitzan, Jonathan, 2023. "Inflation as Redistribution. Creditors, Workers, Policymakers," Working Papers on Capital as Power 2023/01, Capital As Power - Toward a New Cosmology of Capitalism.
    8. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).
    9. Fix, Blair & Nitzan, Jonathan & Bichler, Shimshon, 2019. "Real GDP: The Flawed Metric at the Heart of Macroeconomics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue 88, pages 51-59.
    10. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    11. Dirk Schoenmaker & Hans Stegeman, 2023. "Can the Market Economy Deal with Sustainability?," De Economist, Springer, vol. 171(1), pages 25-49, March.
    12. Galán, E. & Padró, R. & Marco, I. & Tello, E. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Sacristán, V. & Moreno-Delgado, D., 2016. "Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999)," Ecological Modelling, Elsevier, vol. 336(C), pages 13-25.
    13. Reiner Kümmel & Dietmar Lindenberger, 2020. "Energy in Growth Accounting and the Aggregation of Capital and Output," Biophysical Economics and Resource Quality, Springer, vol. 5(1), pages 1-10, March.
    14. Fix, Blair, 2020. "Economic Development and the Death of the Free Market," Working Papers on Capital as Power 2020/01, Capital As Power - Toward a New Cosmology of Capitalism.
    15. Jin, Zhaoqiang & Liao, Wanjie & Mu, Yixue & Li, Yusheng & Nie, Lixiao, 2023. "Integrated assessment of water footprint and energy production efficiency in different rice-rape rotation systems," Energy, Elsevier, vol. 266(C).
    16. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    17. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    18. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    19. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    20. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:6:y:2021:i:3:d:10.1007_s41247-021-00089-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.