IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v99y2016icp315-321.html
   My bibliography  Save this article

Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran

Author

Listed:
  • Ghatrehsamani, Shirin
  • Ebrahimi, Rahim
  • Kazi, Salim Newaz
  • Badarudin Badry, Ahmad
  • Sadeghinezhad, Emad

Abstract

The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method.

Suggested Citation

  • Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
  • Handle: RePEc:eee:energy:v:99:y:2016:i:c:p:315-321
    DOI: 10.1016/j.energy.2015.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    2. Samavatean, Naeimeh & Rafiee, Shahin & Mobli, Hossein & Mohammadi, Ali, 2011. "An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran," Renewable Energy, Elsevier, vol. 36(6), pages 1808-1813.
    3. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    4. Gerhard Piringer & Laura J. Steinberg, 2006. "Reevaluation of Energy Use in Wheat Production in the United States," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 149-167, January.
    5. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    6. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    7. Yilmaz, Ibrahim & Akcaoz, Handan & Ozkan, Burhan, 2005. "An analysis of energy use and input costs for cotton production in Turkey," Renewable Energy, Elsevier, vol. 30(2), pages 145-155.
    8. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    9. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    10. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    11. Kizilaslan, Halil, 2009. "Input-output energy analysis of cherries production in Tokat Province of Turkey," Applied Energy, Elsevier, vol. 86(7-8), pages 1354-1358, July.
    12. Ramedani, Z. & Rafiee, S. & Heidari, M.D., 2011. "An investigation on energy consumption and sensitivity analysis of soybean production farms," Energy, Elsevier, vol. 36(11), pages 6340-6344.
    13. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahar Safarian & Sorena Sattari & Runar Unnthorsson & Zeinab Hamidzadeh, 2019. "Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-16, March.
    2. Javad Zare Derakhshan & Saeed Firouzi & Armaghan Kosari-Moghaddam, 2022. "Energy audit of tobacco production agro-system based on different farm size levels in northern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2715-2735, February.
    3. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    4. João Pires Gaspar & Pedro Dinis Gaspar & Pedro Dinho da Silva & Maria Paula Simões & Christophe Espírito Santo, 2018. "Energy Life-Cycle Assessment of Fruit Products—Case Study of Beira Interior’s Peach (Portugal)," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    5. Persefoni Maletsika & Chris Cavalaris & Vasileios Giouvanis & George D. Nanos, 2022. "Effects of Alternative Fertilization and Irrigation Practices on the Energy Use and Carbon Footprint of Canning Peach Orchards," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    6. Hossein Jargan & Abbas Rohani & Armaghan Kosari-Moghaddam, 2022. "Application of modeling techniques for energy analysis of fruit production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2616-2639, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    2. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    3. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    4. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    5. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    6. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    7. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    8. Hemmati, Abolfazl & Tabatabaeefar, Ahmad & Rajabipour, Ali, 2013. "Comparison of energy flow and economic performance between flat land and sloping land olive orchards," Energy, Elsevier, vol. 61(C), pages 472-478.
    9. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    10. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    11. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    12. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    13. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    14. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    15. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    16. Burak Saltuk & Barbara Jagosz & Osman Gökdoğan & Roman Rolbiecki & Atılgan Atilgan & Stanisław Rolbiecki, 2022. "An Investigation on the Energy Balance and Greenhouse Gas Emissions of Orange Production in Turkey," Energies, MDPI, vol. 15(22), pages 1-14, November.
    17. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    18. Samavatean, Naeimeh & Rafiee, Shahin & Mobli, Hossein & Mohammadi, Ali, 2011. "An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran," Renewable Energy, Elsevier, vol. 36(6), pages 1808-1813.
    19. Bojacá, Carlos Ricardo & Casilimas, Héctor Albeiro & Gil, Rodrigo & Schrevens, Eddie, 2012. "Extending the input–output energy balance methodology in agriculture through cluster analysis," Energy, Elsevier, vol. 47(1), pages 465-470.
    20. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:99:y:2016:i:c:p:315-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.