IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v121y2016icp160-174.html
   My bibliography  Save this article

Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès County, Catalonia, c.1860 and 1999)

Author

Listed:
  • Tello, E.
  • Galán, E.
  • Sacristán, V.
  • Cunfer, G.
  • Guzmán, G.I.
  • González de Molina, M.
  • Krausmann, F.
  • Gingrich, S.
  • Padró, R.
  • Marco, I.
  • Moreno-Delgado, D.

Abstract

We present an energy analysis of past and present farm systems aimed to contribute to their sustainability assessment. Looking at agroecosystems as a set of energy loops between nature and society, and adopting a farm-operator standpoint at landscape level to set the system boundaries, enthalpy values of energy carriers are accounted for net Final Produce going outside as well as for Biomass Reused cycling inside, and External Inputs are accounted using embodied values. Human Labour is accounted for the fraction of the energy intake of labouring people devoted to perform farm work, considering the local or external origin of their food basket. In this approach the proportion of internal Biomass Reused becomes a hallmark of organic farm systems that tend to save External Inputs, whereas industrial farming and livestock breeding in feedlots tend to get rid of reuses replacing them with inputs coming from outside. Hence, decomposing the internal or external energy throughputs may bring to light their contrasting sociometabolic profiles. A Catalan case study in 1860 and 1990 is used as a test bench to show how revealing this decomposing analysis may be to plot the energy profiles of farm systems and their possible improvement pathways.

Suggested Citation

  • Tello, E. & Galán, E. & Sacristán, V. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Padró, R. & Marco, I. & Moreno-Delgado, D., 2016. "Opening the black box of energy throughputs in farm systems: A decomposition analysis between the energy returns to external inputs, internal biomass reuses and total inputs consumed (the Vallès Count," Ecological Economics, Elsevier, vol. 121(C), pages 160-174.
  • Handle: RePEc:eee:ecolec:v:121:y:2016:i:c:p:160-174
    DOI: 10.1016/j.ecolecon.2015.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800915004449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2015.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    2. Robert U. Ayres & Benjamin Warr, 2009. "The Economic Growth Engine," Books, Edward Elgar Publishing, number 13324.
    3. Lluis Parcerisas & Joan Marull & Joan Pino & Enric Tello & Francesc Coll & Corina Basnou, 2012. "Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (the Maresme County, 1850-2005)," Working Papers in Economics 273, Universitat de Barcelona. Espai de Recerca en Economia.
    4. Jones, M. R., 1989. "Analysis of the use of energy in agriculture--Approaches and problems," Agricultural Systems, Elsevier, vol. 29(4), pages 339-355.
    5. Charles A.S. Hall, 2011. "Synthesis to Special Issue on New Studies in EROI (Energy Return on Investment)," Sustainability, MDPI, vol. 3(12), pages 1-4, December.
    6. Mayumi, Kozo, 1991. "Temporary emancipation from land: from the industrial revolution to the present time," Ecological Economics, Elsevier, vol. 4(1), pages 35-56, October.
    7. Jack P. Manno, 2011. "Looking for a Silver Lining: The Possible Positives of Declining Energy Return on Investment (EROI)," Sustainability, MDPI, vol. 3(11), pages 1-9, October.
    8. Ioannis N. Kessides & David C. Wade, 2011. "Deriving an Improved Dynamic EROI to Provide Better Information for Energy Planners," Sustainability, MDPI, vol. 3(12), pages 1-19, December.
    9. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.
    10. Eduardo Aguilera & Gloria I. Guzmán & Juan Infante-Amate & David Soto & Roberto García-Ruiz & Antonio Herrera & Inmaculada Villa & Eva Torremocha & Guiomar Carranza & Manuel González de Molina, 2015. "Embodied energy in agricultural inputs. Incorporating a historical perspective," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1507, Sociedad de Estudios de Historia Agraria.
    11. Marc Badia-Miró & Enric Tello, 2014. "Vine-growing in Catalonia: the main agricultural change underlying the earliest industrialization in Mediterranean Europe (1720–1939)," European Review of Economic History, European Historical Economics Society, vol. 18(2), pages 203-226.
    12. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    13. Krausmann, Fridolin & Gingrich, Simone & Haberl, Helmut & Erb, Karl-Heinz & Musel, Annabella & Kastner, Thomas & Kohlheb, Norbert & Niedertscheider, Maria & Schwarzlmüller, Elmar, 2012. "Long-term trajectories of the human appropriation of net primary production: Lessons from six national case studies," Ecological Economics, Elsevier, vol. 77(C), pages 129-138.
    14. Xavier Cussó & Ramon Garrabou & José Ramon Olarieta & Enric Tello, 2006. "Balances energéticos y uso del sueloen la agricultura catalana: una comparación entre mediados del siglo XIX y finales del siglo XX," UHE Working papers 2006_07, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
    15. Ali S. Pracha & Timothy A. Volk, 2011. "An Edible Energy Return on Investment (EEROI) Analysis of Wheat and Rice in Pakistan," Sustainability, MDPI, vol. 3(12), pages 1-34, December.
    16. Shinuo Deng & George R. Tynan, 2011. "Implications of Energy Return on Energy Invested on Future Total Energy Demand," Sustainability, MDPI, vol. 3(12), pages 1-10, December.
    17. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nele Lohrum & Morten Graversgaard & Chris Kjeldsen, 2021. "Historical Transition of a Farming System towards Industrialization: A Danish Agricultural Case Study Comparing Sustainability in the 1840s and 2019," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Francesco Galioto & Chiara Paffarini & Massimo Chiorri & Biancamaria Torquati & Lucio Cecchini, 2017. "Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    3. Guzmán, Gloria Isabel & Fernández, David Soto & Aguilera, Eduardo & Infante-Amate, Juan & de Molina, Manuel González, 2022. "The close relationship between biophysical degradation, ecosystem services and family farms decline in Spanish agriculture (1992–2017)," Ecosystem Services, Elsevier, vol. 56(C).
    4. Elen Presotto & Gabrielli Martinelli & Gabriela Allegretti & Edson Talamini, 2021. "Energy Efficiency, Monetary Costs, and Sustainability of Brazilian Rainfed and Irrigated Rice Cropping Systems," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-14, September.
    5. Alexander Urrego-Mesa & Juan Infante-Amate & Enric Tello, 2018. "Pastures and Cash Crops: Biomass Flows in the Socio-Metabolic Transition of Twentieth-Century Colombian Agriculture," Sustainability, MDPI, vol. 11(1), pages 1-28, December.
    6. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    7. Kander, Astrid & Warde, Paul & Teives Henriques, Sofia & Nielsen, Hana & Kulionis, Viktoras & Hagen, Sven, 2017. "International Trade and Energy Intensity During European Industrialization, 1870–1935," Ecological Economics, Elsevier, vol. 139(C), pages 33-44.
    8. Michael Gizicki-Neundlinger & And Dino Güldner, 2017. "Surplus, Scarcity and Soil Fertility in Pre-Industrial Austrian Agriculture—The Sustainability Costs of Inequality," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    9. Claudio Cattaneo & Joan Marull & Enric Tello, 2018. "Landscape Agroecology. The Dysfunctionalities of Industrial Agriculture and the Loss of the Circular Bioeconomy in the Barcelona Region, 1956–2009," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    10. LaRota-Aguilera, María José & Delgadillo-Vargas, Olga Lucía & Tello, Enric, 2022. "Sociometabolic research in Latin America: A review on advances and knowledge gaps in agroecological trends and rural perspectives," Ecological Economics, Elsevier, vol. 193(C).
    11. Grešlová, Petra & Štych, Přemysl & Salata, Tomasz & Hernik, Józef & Knížková, Ivana & Bičík, Ivan & Jeleček, Leoš & Prus, Barbara & Noszczyk, Tomasz, 2019. "Agroecosystem energy metabolism in Czechia and Poland in the two decades after the fall of communism: From a centrally planned system to market oriented mode of production," Land Use Policy, Elsevier, vol. 82(C), pages 807-820.
    12. Galán, E. & Padró, R. & Marco, I. & Tello, E. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Sacristán, V. & Moreno-Delgado, D., 2016. "Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999)," Ecological Modelling, Elsevier, vol. 336(C), pages 13-25.
    13. Marco, I. & Padró, R. & Tello, E., 2020. "Dialogues on nature, class and gender: Revisiting socio-ecological reproduction in past organic advanced agriculture (Sentmenat, Catalonia, 1850)," Ecological Economics, Elsevier, vol. 169(C).
    14. Hana Nielsen, 2018. "Industrial Intensification and Energy Embodied in Trade: Long‐Run Energy Perspective of the Planned Economy of Czechoslovakia," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1436-1450, December.
    15. Padró, R. & Marco, I. & Font, C. & Tello, E., 2019. "Beyond Chayanov: A sustainable agroecological farm reproductive analysis of peasant domestic units and rural communities (Sentmenat; Catalonia, 1860)," Ecological Economics, Elsevier, vol. 160(C), pages 227-239.
    16. Warner, Kevin J. & Jones, Glenn A., 2017. "A population-induced renewable energy timeline in nine world regions," Energy Policy, Elsevier, vol. 101(C), pages 65-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galán, E. & Padró, R. & Marco, I. & Tello, E. & Cunfer, G. & Guzmán, G.I. & González de Molina, M. & Krausmann, F. & Gingrich, S. & Sacristán, V. & Moreno-Delgado, D., 2016. "Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999)," Ecological Modelling, Elsevier, vol. 336(C), pages 13-25.
    2. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    3. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    4. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    5. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    6. Padró, R. & Marco, I. & Font, C. & Tello, E., 2019. "Beyond Chayanov: A sustainable agroecological farm reproductive analysis of peasant domestic units and rural communities (Sentmenat; Catalonia, 1860)," Ecological Economics, Elsevier, vol. 160(C), pages 227-239.
    7. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
    8. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    9. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    11. Claudio Cattaneo & Joan Marull & Enric Tello, 2018. "Landscape Agroecology. The Dysfunctionalities of Industrial Agriculture and the Loss of the Circular Bioeconomy in the Barcelona Region, 1956–2009," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    12. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    13. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    14. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    15. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    16. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    17. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    18. Jin, Guangrong & Peng, Yingyu & Liu, Lihua & Su, Zheng & Liu, Jie & Li, Tingting & Wu, Daidai, 2022. "Enhancement of gas production from low-permeability hydrate by radially branched horizontal well: Shenhu Area, South China Sea," Energy, Elsevier, vol. 253(C).
    19. James Ward & Steve Mohr & Robert Costanza & Paul Sutton & Luca Coscieme, 2020. "Renewable Energy Equivalent Footprint ( REEF ): A Method for Envisioning a Sustainable Energy Future," Energies, MDPI, vol. 13(23), pages 1-19, November.
    20. Kemp-Benedict, Eric, 2018. "Dematerialization, Decoupling, and Productivity Change," Ecological Economics, Elsevier, vol. 150(C), pages 204-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:121:y:2016:i:c:p:160-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.