IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v2y2017i2d10.1007_s41247-017-0022-3.html
   My bibliography  Save this article

A Framework for Incorporating EROI into Electrical Storage

Author

Listed:
  • Graham Palmer

    (The University of Melbourne)

Abstract

The contribution from variable renewable energy (VRE) to electricity generation is projected to increase. At low penetration, intermittency can usually be accommodated at low cost. High-penetration VRE will displace conventional generation, and require increased grid flexibility, geographic and technology diversity, and the use of electrical storage. Energy return on investment (EROI) is a tool that gives greater weight to the principles of energetics over market prices, and may provide a long-term guide to prospective energy transitions. The EROI of electrical storage may be critical to the efficacy of high-penetration renewable scenarios. However, there is no generally agreed upon methodology for incorporating storage into EROI. In recent years, there have been important contributions to applying net-energy analysis to storage, including the development of storage-specific net-energy metrics. However, there remains uncertainty as to how to apply these metrics to practical systems to derive useful or predictive information. This paper will introduce a framework for evaluating storage at a system level. It introduces the surplus energy-storage synergy hypothesis as a general principle for exploring the role of storage. It is argued that the useful energy available to society is determined by both the net-energy of the energy source and the stored energy as stocks. This hypothesis is translated across to electricity systems with the use of electrical reliability indices to evaluate the value of storage. A case study applies the framework to a suite of VRE simulations. The case study was modelled as a limiting case of VRE plus storage, and is therefore not intended as a comprehensive cost-optimised solution to high-penetration VRE. A shift from an electrical system based mostly on energy stocks to one based mostly on natural flows is constrained by the quantity of storage required, and the quantity of VRE overbuild to charge the stores. The application of the framework shows that the value of electrical storage and overbuild exhibits a marked diminishing returns behaviour at rising VRE penetration and therefore the first units of storage are the most valuable. The framework is intended to stimulate further research into using EROI to better understand the role of VRE and storage in prospective energy transitions.

Suggested Citation

  • Graham Palmer, 2017. "A Framework for Incorporating EROI into Electrical Storage," Biophysical Economics and Resource Quality, Springer, vol. 2(2), pages 1-19, June.
  • Handle: RePEc:spr:bioerq:v:2:y:2017:i:2:d:10.1007_s41247-017-0022-3
    DOI: 10.1007/s41247-017-0022-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-017-0022-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-017-0022-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    2. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    3. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    4. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    5. Graham Palmer, 2013. "Household Solar Photovoltaics: Supplier of Marginal Abatement, or Primary Source of Low-Emission Power?," Sustainability, MDPI, vol. 5(4), pages 1-37, March.
    6. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
    7. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0.
    8. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    9. Joas, Fabian & Pahle, Michael & Flachsland, Christian & Joas, Amani, 2016. "Which goals are driving the Energiewende? Making sense of the German Energy Transformation," Energy Policy, Elsevier, vol. 95(C), pages 42-51.
    10. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    11. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521131858.
    12. Hibbs Jr., Douglas A. & Olsson, Ola, 2003. "Geography, Biogeography and Why Some Countries are Rich and Others Poor," Working Papers in Economics 105, University of Gothenburg, Department of Economics, revised 15 Jan 2004.
    13. Jorgenson, Dale W, 1984. "The Role of Energy in Productivity Growth," American Economic Review, American Economic Association, vol. 74(2), pages 26-30, May.
    14. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    15. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    16. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    17. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    18. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    19. Wrigley,E. A., 2010. "Energy and the English Industrial Revolution," Cambridge Books, Cambridge University Press, number 9780521766937.
    20. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    21. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    22. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    23. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, January.
    24. Huva, Robert & Dargaville, Roger & Rayner, Peter, 2016. "Optimising the deployment of renewable resources for the Australian NEM (National Electricity Market) and the effect of atmospheric length scales," Energy, Elsevier, vol. 96(C), pages 468-473.
    25. Guido Buenstorf, 2004. "The Economics of Energy and the Production Process," Books, Edward Elgar Publishing, number 3157.
    26. Oswald, James & Raine, Mike & Ashraf-Ball, Hezlin, 2008. "Will British weather provide reliable electricity?," Energy Policy, Elsevier, vol. 36(8), pages 3202-3215, August.
    27. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    2. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Sers, Martin R. & Victor, Peter A., 2018. "The Energy-emissions Trap," Ecological Economics, Elsevier, vol. 151(C), pages 10-21.
    4. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    5. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    7. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    8. Walmsley, Timothy G. & Walmsley, Michael R.W. & Varbanov, Petar S. & Klemeš, Jiří J., 2018. "Energy Ratio analysis and accounting for renewable and non-renewable electricity generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 328-345.
    9. Graham Palmer & Joshua Floyd, 2017. "An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-20, December.
    10. Diesendorf, M. & Wiedmann, T., 2020. "Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity," Ecological Economics, Elsevier, vol. 176(C).
    11. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    12. Richard Heinberg & Timothy Crownshaw, 2018. "Energy Decline and Authoritarianism," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graham Palmer & Joshua Floyd, 2017. "An Exploration of Divergence in EPBT and EROI for Solar Photovoltaics," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-20, December.
    2. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    3. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    4. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    6. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    7. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    8. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    9. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    10. Hongshuo Yan & Lianyong Feng & Jianliang Wang & Yuanying Chi & Yue Ma, 2021. "A Comprehensive Net Energy Analysis and Outlook of Energy System in China," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-14, December.
    11. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    12. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    13. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    14. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    15. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    16. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    17. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    18. Chen, Yingchao & Feng, Lianyong & Wang, Jianliang & Höök, Mikael, 2017. "Emergy-based energy return on investment method for evaluating energy exploitation," Energy, Elsevier, vol. 128(C), pages 540-549.
    19. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
    20. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:2:y:2017:i:2:d:10.1007_s41247-017-0022-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.