IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v11y2011i4p1131-1158.html
   My bibliography  Save this article

Role of renewable energy in climate mitigation: a synthesis of recent scenarios

Author

Listed:
  • Volker Krey
  • Leon Clarke

Abstract

The role of renewable energy in climate change mitigation is explored through a review of 162 recent medium- to long-term scenarios from 15 large-scale, energy-economic and integrated assessment models. The current state of knowledge from this community is assessed and its implications drawn for the strategic context in which policymakers and other decision-makers might consider renewable energy. The scenario set is distinguished from previous ones in that it contains more detailed information on renewable deployment levels. All the scenarios in this study were published during or after 2006. Within the context of a large-scale assessment, the analysis is guided primarily by four questions. What sorts of future levels of renewable energy deployment are consistent with different CO 2 concentration goals? Which classes of renewable energy will be the most prominent energy producers and how quickly might they expand production? Where might an expansion in renewable energy occur? What is the linkage between the costs of mitigation and an expansion of renewable energy?

Suggested Citation

  • Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
  • Handle: RePEc:taf:tcpoxx:v:11:y:2011:i:4:p:1131-1158
    DOI: 10.1080/14693062.2011.579308
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2011.579308
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2011.579308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    2. Tatsuya Hanaoka & Mikiko Kainuma & Reina Kawase & Yuzuru Matsuoka, 2006. "Emissions scenarios database and regional mitigation analysis: a review of post-TAR mitigation scenarios," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 367-389, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    2. Marvão Pereira, Alfredo & Marvão Pereira, Rui Manuel, 2010. "Is fuel-switching a no-regrets environmental policy? VAR evidence on carbon dioxide emissions, energy consumption and economic performance in Portugal," Energy Economics, Elsevier, vol. 32(1), pages 227-242, January.
    3. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    4. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    5. Lucio, Nilson Rogerio & Lamas, Wendell de Queiroz & de Camargo, Jose Rubens, 2013. "Strategic energy management in the primary aluminium industry: Self-generation as a competitive factor," Energy Policy, Elsevier, vol. 59(C), pages 182-188.
    6. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    7. Xu Liu & Bo Shen & Lynn Price & Ali Hasanbeigi & Hongyou Lu & Cong Yu & Guanyun Fu, 2019. "A review of international practices for energy efficiency and carbon emissions reduction and lessons learned for China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    8. Jaume Freire-Gonz lez & Ignasi Puig-Ventosa, 2015. "Energy Efficiency Policies and the Jevons Paradox," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 69-79.
    9. Chien-Ho Wang & Ming-Hui Ko & Wan-Jiun Chen, 2019. "Effects of Kyoto Protocol on CO 2 Emissions: A Five-Country Rolling Regression Analysis," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    10. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    11. Ralf Martin & Laure B. de Preux & Ulrich J. Wagner, 2009. "The impacts of the Climate Change Levy on business: evidence from microdata," GRI Working Papers 6, Grantham Research Institute on Climate Change and the Environment.
    12. Martin, Ralf & de Preux, Laure B. & Wagner, Ulrich J., 2014. "The impact of a carbon tax on manufacturing: Evidence from microdata," Journal of Public Economics, Elsevier, vol. 117(C), pages 1-14.
    13. James W. Murray, 2016. "Limitations of Oil Production to the IPCC Scenarios: The New Realities of US and Global Oil Production," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-13, December.
    14. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    15. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    16. Arazmuradov, Annageldy, 2011. "Energy consumption and carbon dioxide environmental efficiency for former Soviet Union economies. evidence from DEA window analysis," MPRA Paper 36903, University Library of Munich, Germany, revised 24 Feb 2012.
    17. Labandeira, Xavier & Labeaga, José M. & Linares, Pedro & López-Otero, Xiral, 2020. "The impacts of energy efficiency policies: Meta-analysis," Energy Policy, Elsevier, vol. 147(C).
    18. Erik Dietzenbacher & Manfred Lenzen & Bart Los & Dabo Guan & Michael L. Lahr & Ferran Sancho & Sangwon Suh & Cuihong Yang, 2013. "Input--Output Analysis: The Next 25 Years," Economic Systems Research, Taylor & Francis Journals, vol. 25(4), pages 369-389, December.
    19. Andersen, Kristoffer Steen & Dockweiler, Steffen & Klinge Jacobsen, Henrik, 2019. "Squaring the energy efficiency circle: evaluating industry energy efficiency policy in a hybrid model setting," MPRA Paper 96546, University Library of Munich, Germany.
    20. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:11:y:2011:i:4:p:1131-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.