IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v226y2012i5p526-548.html
   My bibliography  Save this article

Risk assessment of UK biofuel developments within the rapidly evolving energy and transport sectors

Author

Listed:
  • Geoffrey P Hammond
  • Hayley R Howard
  • Andrew Tuck

Abstract

A range of major risks associated with the production and use of biofuels in the rapidly changing United Kingdom (UK) energy and transport sectors have been identified and quantified. This was achieved with the aid of various stakeholder groups (academic researchers; industrialists; and a concatenated group of policy makers together with ‘green’ and international development groups), who completed an online internet questionnaire. Each stakeholder ranked 15 potential risks associated with the UK development and use of liquid biofuels according to their perceived ‘severity of impact’ and ‘likelihood of occurrence’ using a three-point scale. This data was then used to perform a ranking of the risks by multiplying scores for impact and occurrence. There was some variation between the different stakeholder groups, but the similar risks were ranked highly by each group. The overall ranking identified the main risks as being a lack of investor confidence in biofuel developments (the highest score); energy or fuel security issues; negative public perception of biofuels (equal second highest); increased food prices; high barriers to entry into the fuel market; and misdirected agricultural expansion or land use (equal fifth highest). Comments by the expert respondents also provide a qualitative evaluation of the present state of UK biofuel developments. The present trial illustrates the potential of using risk issues appraisal and ranking to evaluate developing risks to the UK biofuels landscape. Clearly such an exercise would need to be carried out periodically if it were to maintain its value to the biofuel-related industrial sector and other stakeholders, including policy makers.

Suggested Citation

  • Geoffrey P Hammond & Hayley R Howard & Andrew Tuck, 2012. "Risk assessment of UK biofuel developments within the rapidly evolving energy and transport sectors," Journal of Risk and Reliability, , vol. 226(5), pages 526-548, October.
  • Handle: RePEc:sae:risrel:v:226:y:2012:i:5:p:526-548
    DOI: 10.1177/1748006X12448147
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X12448147
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X12448147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hammond, G.P. & Kallu, S. & McManus, M.C., 2008. "Development of biofuels for the UK automotive market," Applied Energy, Elsevier, vol. 85(6), pages 506-515, June.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Geoffrey P. Hammond, 2004. "Engineering Sustainability: Thermodynamics, Energy Systems and the Environment," Palgrave Macmillan Books, in: Adrian Winnett (ed.), Towards an Environment Research Agenda, chapter 8, pages 175-210, Palgrave Macmillan.
    4. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    5. Cranston, G.R. & Hammond, G.P., 2010. "North and south: Regional footprints on the transition pathway towards a low carbon, global economy," Applied Energy, Elsevier, vol. 87(9), pages 2945-2951, September.
    6. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    7. Göran Broman & John Holmberg & Karl-Henrik Robört, 2000. "Simplicity Without Reduction: Thinking Upstream Towards the Sustainable Society," Interfaces, INFORMS, vol. 30(3), pages 13-25, June.
    8. Mitchell, Donald, 2008. "A note on rising food prices," Policy Research Working Paper Series 4682, The World Bank.
    9. Paul Upham, 2000. "Scientific consensus on sustainability: the case of The Natural Step," Sustainable Development, John Wiley & Sons, Ltd., vol. 8(4), pages 180-190.
    10. Adams, P.W. & Hammond, G.P. & McManus, M.C. & Mezzullo, W.G., 2011. "Barriers to and drivers for UK bioenergy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1217-1227, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Harvey J., 2013. "Beyond sharing: cultivating cooperative transportation systems through geographic information science," Journal of Transport Geography, Elsevier, vol. 31(C), pages 296-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey P. Hammond, 2006. "‘People, planet and prosperity’: The determinants of humanity's environmental footprint," Natural Resources Forum, Blackwell Publishing, vol. 30(1), pages 27-36, February.
    2. Hammond, Geoffrey P., 2009. "Industrial energy analysis, thermodynamics and sustainability," Applied Energy, Elsevier, vol. 84(7-8), pages 675-700, July.
    3. Ali, Tariq & Huang, Jikun & Yang, Jun, 2013. "Impact assessment of global and national biofuels developments on agriculture in Pakistan," Applied Energy, Elsevier, vol. 104(C), pages 466-474.
    4. Hammond, Geoffrey P. & Seth, Shashank M., 2013. "Carbon and environmental footprinting of global biofuel production," Applied Energy, Elsevier, vol. 112(C), pages 547-559.
    5. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    6. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    7. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    8. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    9. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    10. Nanda, Sonil & Azargohar, Ramin & Dalai, Ajay K. & Kozinski, Janusz A., 2015. "An assessment on the sustainability of lignocellulosic biomass for biorefining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 925-941.
    11. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    12. Olivia Riera & Johan Swinnen, 2014. "Household level spillover effects from biofuels," LICOS Discussion Papers 35614, LICOS - Centre for Institutions and Economic Performance, KU Leuven.
    13. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    14. Riera, Olivia & Swinnen, Johan, 2016. "Household level spillover effects from biofuels: Evidence from castor in Ethiopia," Food Policy, Elsevier, vol. 59(C), pages 55-65.
    15. Colin A. Carter & Gordon C. Rausser & Aaron Smith, 2017. "Commodity Storage and the Market Effects of Biofuel Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 1027-1055.
    16. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    17. Chen, Hong & Long, Ruyin & Niu, Wenjing & Feng, Qun & Yang, Ranran, 2014. "How does individual low-carbon consumption behavior occur? – An analysis based on attitude process," Applied Energy, Elsevier, vol. 116(C), pages 376-386.
    18. Buytaert, V. & Muys, B. & Devriendt, N. & Pelkmans, L. & Kretzschmar, J.G. & Samson, R., 2011. "Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3918-3933.
    19. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    20. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:226:y:2012:i:5:p:526-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.