IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp547-559.html
   My bibliography  Save this article

Carbon and environmental footprinting of global biofuel production

Author

Listed:
  • Hammond, Geoffrey P.
  • Seth, Shashank M.

Abstract

The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007–2009 out until 2019. Estimates of future global biofuel production were adopted from OECD–FAO and related projections. In order to determine the footprints associated with these (essentially ‘first generation’) biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and waste, transport, and water components. The global carbon footprint of biofuels was estimated to be 0.248billion (bn) global hectares (gha) in 2010; arising to 0.449bn gha by 2019. The total environmental footprint for the global production of biofuels was estimated to be 0.720billion gha for 2010; rising to 1.242bn gha by 2019. Bioproductive land use proved to give rise to the highest element of the footprint, with the ‘carbon footprint’ as the next highest, followed by the water footprint, and then the transport component. The waste, built land, and embodied energy components contributed an insignificant amount to the total environmental footprint.

Suggested Citation

  • Hammond, Geoffrey P. & Seth, Shashank M., 2013. "Carbon and environmental footprinting of global biofuel production," Applied Energy, Elsevier, vol. 112(C), pages 547-559.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:547-559
    DOI: 10.1016/j.apenergy.2013.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913000172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kitzes, Justin & Galli, Alessandro & Bagliani, Marco & Barrett, John & Dige, Gorm & Ede, Sharon & Erb, Karlheinz & Giljum, Stefan & Haberl, Helmut & Hails, Chris & Jolia-Ferrier, Laurent & Jungwirth, , 2009. "A research agenda for improving national Ecological Footprint accounts," Ecological Economics, Elsevier, vol. 68(7), pages 1991-2007, May.
    2. Hammond, G.P. & Kallu, S. & McManus, M.C., 2008. "Development of biofuels for the UK automotive market," Applied Energy, Elsevier, vol. 85(6), pages 506-515, June.
    3. Cranston, G.R. & Hammond, G.P., 2010. "North and south: Regional footprints on the transition pathway towards a low carbon, global economy," Applied Energy, Elsevier, vol. 87(9), pages 2945-2951, September.
    4. Elghali, Lucia & Clift, Roland & Sinclair, Philip & Panoutsou, Calliope & Bauen, Ausilio, 2007. "Developing a sustainability framework for the assessment of bioenergy systems," Energy Policy, Elsevier, vol. 35(12), pages 6075-6083, December.
    5. Alderson, Helen & Cranston, Gemma R. & Hammond, Geoffrey P., 2012. "Carbon and environmental footprinting of low carbon UK electricity futures to 2050," Energy, Elsevier, vol. 48(1), pages 96-107.
    6. Huijbregts, Mark A.J. & Hellweg, Stefanie & Frischknecht, Rolf & Hungerbuhler, Konrad & Hendriks, A. Jan, 2008. "Ecological footprint accounting in the life cycle assessment of products," Ecological Economics, Elsevier, vol. 64(4), pages 798-807, February.
    7. Adams, P.W. & Hammond, G.P. & McManus, M.C. & Mezzullo, W.G., 2011. "Barriers to and drivers for UK bioenergy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1217-1227, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    4. Kächele, Rebecca & Nurkowski, Daniel & Martin, Jacob & Akroyd, Jethro & Kraft, Markus, 2019. "An assessment of the viability of alternatives to biodiesel transport fuels," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    6. Monlau, F. & Francavilla, M. & Sambusiti, C. & Antoniou, N. & Solhy, A. & Libutti, A. & Zabaniotou, A. & Barakat, A. & Monteleone, M., 2016. "Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment," Applied Energy, Elsevier, vol. 169(C), pages 652-662.
    7. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2020. "Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia," Applied Energy, Elsevier, vol. 279(C).
    8. Barckholtz, Timothy A. & Taylor, Kevin M. & Narayanan, Sundar & Jolly, Stephen & Ghezel-Ayagh, Hossein, 2022. "Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation," Applied Energy, Elsevier, vol. 313(C).
    9. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    10. Ajanovic, Amela & Haas, Reinhard, 2014. "On the future prospects and limits of biofuels in Brazil, the US and EU," Applied Energy, Elsevier, vol. 135(C), pages 730-737.
    11. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    12. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    13. Ge, Yuntian & Li, Lin, 2018. "System-level energy consumption modeling and optimization for cellulosic biofuel production," Applied Energy, Elsevier, vol. 226(C), pages 935-946.
    14. Perčić, Maja & Vladimir, Nikola & Jovanović, Ivana & Koričan, Marija, 2022. "Application of fuel cells with zero-carbon fuels in short-sea shipping," Applied Energy, Elsevier, vol. 309(C).
    15. Berazneva, Julia & Woolf, Dominic & Lee, David R., 2021. "Local lignocellulosic biofuel and biochar co-production in Sub-Saharan Africa: The role of feedstock provision in economic viability," Energy Economics, Elsevier, vol. 93(C).
    16. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    17. Tasnim Ahmed & Mohammad Mazibar Rahman & Mahbuba Aktar & Anupam Gupta & Mohammad Zoynul Abedin, 2023. "The impact of economic development on environmental sustainability: evidence from the Asian region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3523-3553, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey P Hammond & Hayley R Howard & Andrew Tuck, 2012. "Risk assessment of UK biofuel developments within the rapidly evolving energy and transport sectors," Journal of Risk and Reliability, , vol. 226(5), pages 526-548, October.
    2. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    3. Scott, James A. & Ho, William & Dey, Prasanta K., 2013. "Strategic sourcing in the UK bioenergy industry," International Journal of Production Economics, Elsevier, vol. 146(2), pages 478-490.
    4. McManus, M.C., 2010. "Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems," Energy, Elsevier, vol. 35(10), pages 4064-4070.
    5. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    6. Ajanovic, Amela & Haas, Reinhard, 2014. "On the future prospects and limits of biofuels in Brazil, the US and EU," Applied Energy, Elsevier, vol. 135(C), pages 730-737.
    7. Rahman, Abul & Khanam, Tahamina & Pelkonen, Paavo, 2017. "People’s knowledge, perceptions, and attitudes towards stump harvesting for bioenergy production in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 107-116.
    8. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    9. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    10. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    11. Kęstutis Biekša & Violeta Valiulė & Ligita Šimanskienė & Raffaele Silvestri, 2022. "Assessment of Sustainable Economic Development in the EU Countries with Reference to the SDGs and Environmental Footprint Indices," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    12. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    13. Damiete Emmanuel-Yusuf & Stephen Morse & Matthew Leach, 2017. "Resilience and Livelihoods in Supply Chains (RELISC): An Analytical Framework for the Development and Resilience of the UK Wood Fuel Sector," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    14. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    15. Maria Serena Mancini & Mikel Evans & Katsunori Iha & Carla Danelutti & Alessandro Galli, 2018. "Assessing the Ecological Footprint of Ecotourism Packages: A Methodological Proposition," Resources, MDPI, vol. 7(2), pages 1-37, June.
    16. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    17. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    18. Hammond, Geoffrey P. & Mansell, Ross V.M., 2018. "A comparative thermodynamic evaluation of bioethanol processing from wheat straw," Applied Energy, Elsevier, vol. 224(C), pages 136-146.
    19. Jean-Nicolas Louis & Stéphane Allard & Freideriki Kotrotsou & Vincent Debusschere, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Post-Print hal-02376337, HAL.
    20. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:547-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.