IDEAS home Printed from https://ideas.repec.org/a/prf/journl/v14y2020i1p32-50.html
   My bibliography  Save this article

The Efficiency of GARCH Models in Realizing Value at Risk Estimates

Author

Listed:
  • Tomáš Jeøábek

    (University of Finance and Administration)

Abstract

Market risk is an important type of financial risk that is usually caused by price fluctuations in financial markets. One determinant of market risk comprises Value at Risk (VaR), which is defined as the maximum loss that can be achieved within a certain time horizon and at a given reliability level. The aim of the article is to determine the importance of selecting conditional volatility model within the parametric and semi-parametric approach for VaR estimation. The results ascertained show that the application of these models tends to provide more accurate predictions of actual losses as compared to traditional approaches to VaR estimates. Overall, the application of conditional volatility models ensures that VaR estimates are more flexible to adapt to changing market conditions – especially in the periods associated with higher return volatility. Furthermore, the results show that the differences between individual models of contingent volatility are primarily determined by selecting the specific distribution of the standardized residue series.

Suggested Citation

  • Tomáš Jeøábek, 2020. "The Efficiency of GARCH Models in Realizing Value at Risk Estimates," ACTA VSFS, University of Finance and Administration, vol. 14(1), pages 32-50.
  • Handle: RePEc:prf:journl:v:14:y:2020:i:1:p:32-50
    as

    Download full text from publisher

    File URL: https://www.vsfs.cz/periodika/acta-2020-1-03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    2. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Pafka, Szilárd & Kondor, Imre, 2001. "Evaluating the RiskMetrics methodology in measuring volatility and Value-at-Risk in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 305-310.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    7. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    8. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    9. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    10. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    11. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    12. Nikola Radivojevic & Milena Cvjetkovic & Saša Stepanov, 2016. "The new hybrid value at risk approach based on the extreme value theory," Estudios de Economia, University of Chile, Department of Economics, vol. 43(1 Year 20), pages 29-52, June.
    13. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. David McMillan & Pako Thupayagale, 2010. "Evaluating Stock Index Return Value-at-Risk Estimates in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(3), pages 325-345, December.
    3. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    5. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Ye, Wuyi & Luo, Kebing & Liu, Xiaoquan, 2017. "Time-varying quantile association regression model with applications to financial contagion and VaR," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1015-1028.
    7. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    8. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    9. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    10. Ana-Maria Fuertes & Jose Olmo, 2016. "On Setting Day-Ahead Equity Trading Risk Limits: VaR Prediction at Market Close or Open?," JRFM, MDPI, vol. 9(3), pages 1-20, September.
    11. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    12. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    13. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    14. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
    15. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    16. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    17. Durán Santomil, Pablo & Otero González, Luís & Martorell Cunill, Onofre & Merigó Lindahl, José M., 2018. "Backtesting an equity risk model under Solvency II," Journal of Business Research, Elsevier, vol. 89(C), pages 216-222.
    18. Alex YiHou Huang, 2010. "An optimization process in Value‐at‐Risk estimation," Review of Financial Economics, John Wiley & Sons, vol. 19(3), pages 109-116, August.
    19. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    20. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.

    More about this item

    Keywords

    Value at Risk; GARCH models; distribution of standardized residues; extreme values theory;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prf:journl:v:14:y:2020:i:1:p:32-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Magdalena Šebková (email available below). General contact details of provider: https://edirc.repec.org/data/vsfspcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.