IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i12d10.1057_jors.2016.31.html
   My bibliography  Save this article

A mega-trend-diffusion grey forecasting model for short-term manufacturing demand

Author

Listed:
  • Che-Jung Chang

    (Ningbo University)

  • Liping Yu

    (Ningbo University)

  • Peng Jin

    (Ningbo University)

Abstract

Accurate short-term demand forecasting is critical for developing effective production plans; however, a short forecasting period indicates that the product demands are unstable, rendering tracking of product development trends difficult. Determining the actual developing data patterns by using forecasting models generated using historical observations is difficult, and the forecasting performance of such models is unfavourable, whereas using the latest limited data for forecasting can improve management efficiency and maintain the competitive advantages of an enterprise. To solve forecasting problems related to a small data set, this study applied an adaptive grey model for forecasting short-term manufacturing demand. Experiments involving the monthly demand data for thin film transistor liquid crystal display panels and wafer-level chip-scale packaging process data showed that the proposed grey model produced favourable forecasting results, indicating its appropriateness as a short-term forecasting tool for small data sets.

Suggested Citation

  • Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:12:d:10.1057_jors.2016.31
    DOI: 10.1057/jors.2016.31
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2016.31
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2016.31?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
    2. Naiming Xie & Alan Pearman, 2014. "Forecasting energy consumption in China following instigation of an energy-saving policy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 639-659, November.
    3. Yokuma, J. Thomas & Armstrong, J. Scott, 1995. "Beyond accuracy: Comparison of criteria used to select forecasting methods," International Journal of Forecasting, Elsevier, vol. 11(4), pages 591-597, December.
    4. Che-Jung Chang & Wen-Li Dai & Chien-Chih Chen, 2015. "A novel procedure for multimodel development using the grey silhouette coefficient for small-data-set forecasting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1887-1894, November.
    5. Der-Chiang Li & Wen-Chih Chen & Che-Jung Chang & Chien-Chih Chen & I-Hsiang Wen, 2015. "Practical information diffusion techniques to accelerate new product pilot runs," International Journal of Production Research, Taylor & Francis Journals, vol. 53(17), pages 5310-5319, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    2. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    3. Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard E Klosterman, 2012. "Simple and Complex Models," Environment and Planning B, , vol. 39(1), pages 1-6, February.
    2. Chang, Che-Jung & Li, Der-Chiang & Huang, Yi-Hsiang & Chen, Chien-Chih, 2015. "A novel gray forecasting model based on the box plot for small manufacturing data sets," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 400-408.
    3. Khim-Sen Liew & Kian-Ping Lim & Chee-Keong Choong, 2003. "On The Forecastability Of Asean-5 Stock Markets Returns Using Time Series Models," Finance 0307012, University Library of Munich, Germany.
    4. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    5. Robert Fildes & Paul Goodwin, 2007. "Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting," Interfaces, INFORMS, vol. 37(6), pages 570-576, December.
    6. Adya, Monica & Collopy, Fred & Armstrong, J. Scott & Kennedy, Miles, 2001. "Automatic identification of time series features for rule-based forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 143-157.
    7. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    8. Der-Chiang Li & Chun-Wu Yeh & Chieh-Chih Chen & Hung-Ta Shih, 2016. "Using a diffusion wavelet neural network for short-term time series learning in the wafer level chip scale package process," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1261-1272, December.
    9. Stefan Rayer, 2007. "Population forecast accuracy: does the choice of summary measure of error matter?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(2), pages 163-184, April.
    10. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    11. JS Armstrong, 2004. "Forecasting for Environmental Decision Making," General Economics and Teaching 0412023, University Library of Munich, Germany.
    12. Patrick Link & Miltiadis Poursanidis & Jochen Schmid & Rebekka Zache & Martin Kurnatowski & Uwe Teicher & Steffen Ihlenfeldt, 2022. "Capturing and incorporating expert knowledge into machine learning models for quality prediction in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2129-2142, October.
    13. Smith, Stanley K., 1997. "Further thoughts on simplicity and complexity in population projection models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 557-565, December.
    14. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    15. Renbo Liu & Yuhui Ge & Peng Zuo, 2023. "Study on Economic Data Forecasting Based on Hybrid Intelligent Model of Artificial Neural Network Optimized by Harris Hawks Optimization," Mathematics, MDPI, vol. 11(21), pages 1-28, November.
    16. Shuyun Ren & Hau-Ling Chan & Pratibha Ram, 2017. "A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 335-355, October.
    17. Wei Meng & Daoli Yang & Hui Huang, 2018. "Prediction of China’s Sulfur Dioxide Emissions by Discrete Grey Model with Fractional Order Generation Operators," Complexity, Hindawi, vol. 2018, pages 1-13, January.
    18. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    19. repec:aaa:journl:v:3:y:1999:i:1:p:87-100 is not listed on IDEAS
    20. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    21. Der-Chiang Li & Wu-Kuo Lin & Liang-Sian Lin & Chien-Chih Chen & Wen-Ting Huang, 2017. "The attribute-trend-similarity method to improve learning performance for small datasets," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1898-1913, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:12:d:10.1057_jors.2016.31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.