IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v300y2021i2d10.1007_s10479-020-03670-0.html
   My bibliography  Save this article

Forecasting tourism demand using fractional grey prediction models with Fourier series

Author

Listed:
  • Yi-Chung Hu

    (Chung Yuan Christian University)

Abstract

Tourism demand forecasting has played an important role in supporting governments to devise development policies for travel and tourism. However, time series related to tourism often do not conform to statistical assumptions and feature significant temporal fluctuations. Because a Fourier series is often applied to oscillating sequences to remove noise, it is reasonable to develop a grey prediction model in conjunction with a Fourier series to forecast tourism demand. However, grey prediction models traditionally use one-order accumulation, treating each sample with equal weight, to identify regularities concealed in data sequences. Furthermore, when generating residuals from Fourier series, the prediction accuracy of the newly generated predicted values is not taken into account. In this study, by using fractional order accumulation to assign appropriate weights to samples, we propose a fractional grey prediction model with Fourier series that offers high prediction accuracy. Experimental results demonstrate that the proposed grey prediction model performs well compared with other considered prediction models.

Suggested Citation

  • Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
  • Handle: RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-020-03670-0
    DOI: 10.1007/s10479-020-03670-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03670-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03670-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    2. Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
    3. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    4. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    5. Chang-Jui Lin & Hsueh-Fang Chen & Tian-Shyug Lee, 2011. "Forecasting Tourism Demand Using Time Series, Artificial Neural Networks and Multivariate Adaptive Regression Splines:Evidence from Taiwan," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 2(2), pages 14-24, May.
    6. Wu, Lifeng & Liu, Sifeng & Fang, Zhigeng & Xu, Haiyan, 2015. "Properties of the GM(1,1) with fractional order accumulation," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 287-293.
    7. Fang, Jing, 2020. "Prediction and analysis of regional economic income multiplication capability based on fractional accumulation and integral model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Thanh-Lam Nguyen & Jui-Chan Huang & Chuang-Chi Chiu & Ming-Hung Shu & Wen-Ru Tsai, 2013. "Forecasting Model for the International Tourism Demand in Taiwan," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    9. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
    10. Chen, Chun-I, 2008. "Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 278-287.
    11. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    12. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    13. Yi-Chung Hu & Peng Jiang, 2017. "Forecasting energy demand using neural-network-based grey residual modification models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 556-565, May.
    14. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    15. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    16. Ene, Seval & Öztürk, Nursel, 2017. "Grey modelling based forecasting system for return flow of end-of-life vehicles," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 155-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    2. Anca-Gabriela Turtureanu & Rodica Pripoaie & Carmen-Mihaela Cretu & Carmen-Gabriela Sirbu & Emanuel Ştefan Marinescu & Laurentiu-Gabriel Talaghir & Florentina Chițu, 2022. "A Projection Approach of Tourist Circulation under Conditions of Uncertainty," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    3. Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
    4. Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Chung Hu, 2021. "Developing grey prediction with Fourier series using genetic algorithms for tourism demand forecasting," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 315-331, February.
    2. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    3. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
    4. Yi-Chung Hu, 2017. "Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
    5. Xie, Xuemei & Liu, Xiaojie & Blanco, Cristina, 2023. "Evaluating and forecasting the niche fitness of regional innovation ecosystems: A comparative evaluation of different optimized grey models," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    7. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    8. Gazi Murat Duman & Elif Kongar, 2023. "ESG Modeling and Prediction Uncertainty of Electronic Waste," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    9. Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    12. En-Chih Chang, 2018. "Improving Performance for Full-Bridge Inverter of Wind Energy Conversion System Using a Fast and Efficient Control Technique," Energies, MDPI, vol. 11(2), pages 1-16, January.
    13. Wei Zhou & Demei Zhang, 2016. "An Improved Metabolism Grey Model for Predicting Small Samples with a Singular Datum and Its Application to Sulfur Dioxide Emissions in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-11, February.
    14. Yi-Chung Hu, 2017. "Nonadditive Grey Prediction Using Functional-Link Net for Energy Demand Forecasting," Sustainability, MDPI, vol. 9(7), pages 1-14, July.
    15. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    16. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    17. Ma, Weimin & Zhu, Xiaoxi & Wang, Miaomiao, 2013. "Forecasting iron ore import and consumption of China using grey model optimized by particle swarm optimization algorithm," Resources Policy, Elsevier, vol. 38(4), pages 613-620.
    18. Yi-Chung Hu, 2022. "Demand forecasting of green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9809-9831, August.
    19. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    20. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-020-03670-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.