IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32468-w.html
   My bibliography  Save this article

The role of natural gas in reaching net-zero emissions in the electric sector

Author

Listed:
  • John E. T. Bistline

    (Electric Power Research Institute)

  • David T. Young

    (Electric Power Research Institute)

Abstract

Replacing coal with natural gas has contributed to recent emissions reductions in the electric sector, but there are questions about the near- and long-term roles for gas under deep decarbonization. In this study, we assess the potential role for natural gas and carbon removal in deeply decarbonized electricity systems in the U.S. and evaluate the robustness of these insights to key technology and policy assumptions. We find that natural-gas-fired generation can lower the cost of electric sector decarbonization, a result that is robust to a range of sensitivities, when carbon removal is allowed under policy. Accelerating decarbonization to reach net-zero in 2035 entails greater contributions from natural gas than in 2050. Nonetheless, wind and solar have higher generation shares than natural gas for most regions and scenarios (52-66% variable renewables for net-zero scenarios versus 0-19% for gas), suggesting that natural gas generation can be substituted more easily than its capacity.

Suggested Citation

  • John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32468-w
    DOI: 10.1038/s41467-022-32468-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32468-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32468-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    2. John E. T. Bistline & Geoffrey J. Blanford, 2021. "Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Diaz, Gabriel & Inzunza, Andrés & Moreno, Rodrigo, 2019. "The importance of time resolution, operational flexibility and risk aversion in quantifying the value of energy storage in long-term energy planning studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 797-812.
    4. Alexander R. Barron & Allen A. Fawcett & Marc A. C. Hafstead & James R. Mcfarland & Adele C. Morris, 2018. "Policy Insights From The Emf 32 Study On U.S. Carbon Tax Scenarios," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-47, February.
    5. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    8. Jeffrey S. Rutherford & Evan D. Sherwin & Arvind P. Ravikumar & Garvin A. Heath & Jacob Englander & Daniel Cooley & David Lyon & Mark Omara & Quinn Langfitt & Adam R. Brandt, 2021. "Closing the methane gap in US oil and natural gas production emissions inventories," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Haewon McJeon & Jae Edmonds & Nico Bauer & Leon Clarke & Brian Fisher & Brian P. Flannery & Jérôme Hilaire & Volker Krey & Giacomo Marangoni & Raymond Mi & Keywan Riahi & Holger Rogner & Massimo Tavon, 2014. "Limited impact on decadal-scale climate change from increased use of natural gas," Nature, Nature, vol. 514(7523), pages 482-485, October.
    10. Kenneth Gillingham and Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    11. Bistline, John E. & Hodson, Elke & Rossmann, Charles G. & Creason, Jared & Murray, Brian & Barron, Alexander R., 2018. "Electric sector policy, technological change, and U.S. emissions reductions goals: Results from the EMF 32 model intercomparison project," Energy Economics, Elsevier, vol. 73(C), pages 307-325.
    12. Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    13. Marc Jaxa-Rozen & Evelina Trutnevyte, 2021. "Sources of uncertainty in long-term global scenarios of solar photovoltaic technology," Nature Climate Change, Nature, vol. 11(3), pages 266-273, March.
    14. James H. Stock & Daniel N. Stuart, 2021. "Robust Decarbonization of the US Power Sector: Policy Options," NBER Working Papers 28677, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Donovin D. Lewis & Aron Patrick & Evan S. Jones & Rosemary E. Alden & Abdullah Al Hadi & Malcolm D. McCulloch & Dan M. Ionel, 2023. "Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study," Energies, MDPI, vol. 16(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    2. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    4. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    5. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    6. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    8. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Pei-Hao Li & Steve Pye & Ilkka Keppo & Marc Jaxa-Rozen & Evelina Trutnevyte, 2023. "Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques," Climatic Change, Springer, vol. 176(7), pages 1-23, July.
    10. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    11. Bistline, John E.T. & Merrick, James H., 2020. "Parameterizing open-source energy models: Statistical learning to estimate unknown power plant attributes," Applied Energy, Elsevier, vol. 269(C).
    12. Cole, Wesley & Antonysamy, Adithya & Brown, Patrick & Sergi, Brian & Mai, Trieu & Denholm, Paul, 2023. "How much might it cost to decarbonize the power sector? It depends on the metric," Energy, Elsevier, vol. 276(C).
    13. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    14. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    15. Edmonds, James & Nichols, Christopher & Adamantiades, Misha & Bistline, John & Huster, Jonathan & Iyer, Gokul & Johnson, Nils & Patel, Pralit & Showalter, Sharon & Victor, Nadja & Waldhoff, Stephanie , 2020. "Could congressionally mandated incentives lead to deployment of large-scale CO2 capture, facilities for enhanced oil recovery CO2 markets and geologic CO2 storage?," Energy Policy, Elsevier, vol. 146(C).
    16. Wang, Guotao & Liao, Qi & Li, Zhengbing & Zhang, Haoran & Liang, Yongtu & Wei, Xuemei, 2022. "How does soaring natural gas prices impact renewable energy: A case study in China," Energy, Elsevier, vol. 252(C).
    17. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    18. Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
    19. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    20. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32468-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.