IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej39-3-blanfor.html
   My bibliography  Save this article

Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection

Author

Listed:
  • Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young

Abstract

The spatial and temporal variability of renewable generation has important economic implications for electric sector investments and system operations. This study describes a method for selecting representative hours to preserve key distributional requirements for regional load, wind, and solar time series with a two-orders-of-magnitude reduction in dimensionality. We describe the implementation of this procedure in the US-REGEN model and compare impacts on energy system decisions with more common approaches. The results demonstrate how power sector modeling and capacity planning decisions are sensitive to the representation of intra-annual variation and how our proposed approach outperforms simple heuristic selection procedures with lower resolution. The representative hour approach preserves key properties of the joint underlying hourly distributions, whereas seasonal average approaches over-value wind and solar at higher penetration levels and under-value investment in dispatchable capacity by inaccurately capturing the corresponding residual load duration curves.

Suggested Citation

  • Geoffrey J. Blanford, James H. Merrick, John E.T. Bistline, and David T. Young, 2018. "Simulating Annual Variation in Load, Wind, and Solar by Representative Hour Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  • Handle: RePEc:aen:journl:ej39-3-blanfor
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3083
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bistline, John E.T. & Blanford, Geoffrey J., 2020. "Value of technology in the U.S. electric power sector: Impacts of full portfolios and technological change on the costs of meeting decarbonization goals," Energy Economics, Elsevier, vol. 86(C).
    2. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Bistline, John E.T. & Brown, Maxwell & Siddiqui, Sauleh A. & Vaillancourt, Kathleen, 2020. "Electric sector impacts of renewable policy coordination: A multi-model study of the North American energy system," Energy Policy, Elsevier, vol. 145(C).
    4. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    5. Marcy, Cara & Goforth, Teagan & Nock, Destenie & Brown, Maxwell, 2022. "Comparison of temporal resolution selection approaches in energy systems models," Energy, Elsevier, vol. 251(C).
    6. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    7. Edmonds, James & Nichols, Christopher & Adamantiades, Misha & Bistline, John & Huster, Jonathan & Iyer, Gokul & Johnson, Nils & Patel, Pralit & Showalter, Sharon & Victor, Nadja & Waldhoff, Stephanie , 2020. "Could congressionally mandated incentives lead to deployment of large-scale CO2 capture, facilities for enhanced oil recovery CO2 markets and geologic CO2 storage?," Energy Policy, Elsevier, vol. 146(C).
    8. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    9. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    10. ZareAfifi, Farzan & Mahmud, Zabir & Kurtz, Sarah, 2023. "Diurnal, physics-based strategy for computationally efficient capacity-expansion optimizations for solar-dominated grids," Energy, Elsevier, vol. 279(C).
    11. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    12. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    13. Pavičević, Matija & Kavvadias, Konstantinos & Pukšec, Tomislav & Quoilin, Sylvain, 2019. "Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Bistline, John E.T. & Merrick, James H., 2020. "Parameterizing open-source energy models: Statistical learning to estimate unknown power plant attributes," Applied Energy, Elsevier, vol. 269(C).
    16. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. John E. T. Bistline & James Merrick & Victor Niemeyer, 2020. "Estimating Power Sector Leakage Risks and Provincial Impacts of Canadian Carbon Pricing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(1), pages 91-118, May.
    18. Ken Oshiro & Shinichiro Fujimori, 2024. "Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    20. Merrick, James H. & Weyant, John P., 2019. "On choosing the resolution of normative models," European Journal of Operational Research, Elsevier, vol. 279(2), pages 511-523.
    21. Teichgraeber, Holger & Lindenmeyer, Constantin P. & Baumgärtner, Nils & Kotzur, Leander & Stolten, Detlef & Robinius, Martin & Bardow, André & Brandt, Adam R., 2020. "Extreme events in time series aggregation: A case study for optimal residential energy supply systems," Applied Energy, Elsevier, vol. 275(C).
    22. Mallapragada, Dharik S. & Sepulveda, Nestor A. & Jenkins, Jesse D., 2020. "Long-run system value of battery energy storage in future grids with increasing wind and solar generation," Applied Energy, Elsevier, vol. 275(C).

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej39-3-blanfor. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.