IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v84y2018i2d10.1007_s11238-017-9631-y.html
   My bibliography  Save this article

Modeling purchases of new cars: an analysis of the 2014 French market

Author

Listed:
  • Anna Fernández-Antolín

    (School of Architecture, Civil and Environmental Engineering)

  • Matthieu Lapparent

    (School of Business and Engineering Vaud (HEIG-VD))

  • Michel Bierlaire

    (School of Architecture, Civil and Environmental Engineering)

Abstract

This paper analyzes and compares different policy scenarios as well as discusses price elasticities and willingness to pay and to accept using revealed preference (RP) data from the French new-car market in 2014 by means of a cross-nested logit (CNL) model. We focus particularly on electric and hybrid vehicles. We use interactions between the cost (both fixed and running costs) and the household income to analyze the sensitivity towards different policy scenarios per income level. Results show that the willingness to pay and to accept obtained in our study is consistent with the real-market conditions. We also find that the most effective scenario to increase the market shares of new sold electric vehicles is that of a major technological advance such as a decrease in price due to cheaper manufacturing costs and an increase in driving range, rather than a policy-based scenario. In addition, the market segment that has more potential to increase the market shares of electric vehicle purchase is the middle-income level. In the paper, we discuss how to overcome the difficulties of working with revealed preference data, and propose multiple imputations to impute the attributes of the unchosen alternatives, by drawing from their empirical distributions.

Suggested Citation

  • Anna Fernández-Antolín & Matthieu Lapparent & Michel Bierlaire, 2018. "Modeling purchases of new cars: an analysis of the 2014 French market," Theory and Decision, Springer, vol. 84(2), pages 277-303, March.
  • Handle: RePEc:kap:theord:v:84:y:2018:i:2:d:10.1007_s11238-017-9631-y
    DOI: 10.1007/s11238-017-9631-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-017-9631-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-017-9631-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    2. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    3. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    4. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    5. Ricardo A. Daziano & Martin Achtnicht, 2014. "Forecasting Adoption of Ultra-Low-Emission Vehicles Using Bayes Estimates of a Multinomial Probit Model and the GHK Simulator," Transportation Science, INFORMS, vol. 48(4), pages 671-683, November.
    6. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    7. McCarthy, Patrick S. & Tay, Richard S., 1998. "New Vehicle Consumption and Fuel Efficiency: A Nested Logit Approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(1), pages 39-51, March.
    8. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    9. Choo, Sangho & Mokhtarian, Patricia L., 2004. "What type of vehicle do people drive? The role of attitude and lifestyle in influencing vehicle type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 201-222, March.
    10. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    11. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
    12. Adedamola Adepetu & Srinivasan Keshav, 2017. "The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study," Transportation, Springer, vol. 44(2), pages 353-373, March.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    14. Beck, Matthew J. & Rose, John M. & Hensher, David A., 2013. "Environmental attitudes and emissions charging: An example of policy implications for vehicle choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 171-182.
    15. Jerome Adda & Russell Cooper, 2000. "Balladurette and Juppette: A Discrete Analysis of Scrapping Subsidies," Journal of Political Economy, University of Chicago Press, vol. 108(4), pages 778-806, August.
    16. Kim, Jinhee & Rasouli, Soora & Timmermans, Harry, 2014. "Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 71-85.
    17. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    18. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    19. Aurélie Glerum & Lidija Stankovikj & Michaël Thémans & Michel Bierlaire, 2014. "Forecasting the Demand for Electric Vehicles: Accounting for Attitudes and Perceptions," Transportation Science, INFORMS, vol. 48(4), pages 483-499, November.
    20. Berkovec, James, 1985. "Forecasting automobile demand using disaggregate choice models," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 315-329, August.
    21. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    22. de Lapparent, Matthieu & Cernicchiaro, Giulia, 2012. "How long to own and how much to use a car? A dynamic discrete choice model to explain holding duration and driven mileage," Economic Modelling, Elsevier, vol. 29(5), pages 1737-1744.
    23. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    24. Matthew J. Beck & John M. Rose & Stephen P. Greaves, 2017. "I can’t believe your attitude: a joint estimation of best worst attitudes and electric vehicle choice," Transportation, Springer, vol. 44(4), pages 753-772, July.
    25. Berkovec, James & Rust, John, 1985. "A nested logit model of automobile holdings for one vehicle households," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 275-285, August.
    26. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    27. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    28. de Palma, Andre & Kilani, Moez, 2008. "Regulation in the automobile industry," International Journal of Industrial Organization, Elsevier, vol. 26(1), pages 150-167, January.
    29. Hackbarth, André & Madlener, Reinhard, 2011. "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis," FCN Working Papers 20/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    30. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    31. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
    32. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    33. G. Cernicchiaro & M. Lapparent, 2015. "A Dynamic Discrete/Continuous Choice Model for Forward-Looking Agents Owning One or More Vehicles," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 15-34, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Elliott William, 2009. "New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax," University of California Transportation Center, Working Papers qt5gd206wv, University of California Transportation Center.
    2. Chen, Anning, 2011. "Reliable GPS Integer Ambiguity Resolution," University of California Transportation Center, Working Papers qt9gs0t2f9, University of California Transportation Center.
    3. Martin, Elliot William, 2009. "New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax," University of California Transportation Center, Working Papers qt6sz198c2, University of California Transportation Center.
    4. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    5. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    6. Shiau, Ching-Shin Norman & Michalek, Jeremy J. & Hendrickson, Chris T., 2009. "A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(9-10), pages 814-828, November.
    7. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    8. Li, Wenbo & Long, Ruyin & Chen, Hong & Yang, Tong & Geng, Jichao & Yang, Muyi, 2018. "Effects of personal carbon trading on the decision to adopt battery electric vehicles: Analysis based on a choice experiment in Jiangsu, China," Applied Energy, Elsevier, vol. 209(C), pages 478-488.
    9. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    10. Helveston, John Paul & Liu, Yimin & Feit, Elea McDonnell & Fuchs, Erica & Klampfl, Erica & Michalek, Jeremy J., 2015. "Will subsidies drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 96-112.
    11. Baltas, George & Saridakis, Charalampos, 2013. "An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: An integrated model of car type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 92-110.
    12. Simona Bigerna & Silvia Micheli, 2018. "Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    13. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    14. Patrick Bigler & Doina Maria Radulescu, 2022. "Environmental, Redistributive and Revenue Effects of Policies Promoting Fuel Efficient and Electric Vehicles," CESifo Working Paper Series 9645, CESifo.
    15. Mabit, Stefan L., 2014. "Vehicle type choice under the influence of a tax reform and rising fuel prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 32-42.
    16. Jayarajan, Dinakar & Siddarth, S. & Silva-Risso, Jorge, 2018. "Cannibalization vs. competition: An empirical study of the impact of product durability on automobile demand," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 641-660.
    17. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    18. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    19. Jungwoo Shin & Taehoon Lim & Moo Yeon Kim & Jae Young Choi, 2018. "Can Next-Generation Vehicles Sustainably Survive in the Automobile Market? Evidence from Ex-Ante Market Simulation and Segmentation," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    20. Alexandros Dimitropoulos, 2014. "The Influence of Environmental Concerns on Drivers’ Preferences for Electric Cars," Tinbergen Institute Discussion Papers 14-128/VIII, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:84:y:2018:i:2:d:10.1007_s11238-017-9631-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.