Advanced Search
MyIDEAS: Login to save this article or follow this journal

Mixed equilibriums in a three-candidate spatial model with candidate valence

Contents:

Author Info

  • Dimitrios Xefteris

    ()

Abstract

We study a spatial model of electoral competition among three office-motivated candidates of unequal valence (one advantaged and two equally disadvantaged candidates) under majority rule assuming that candidates are uncertain about the voters’ policy preferences and that the policy space consists of three alternatives (one at each extreme of the linear policy spectrum and one in the center) and we characterize mixed strategy Nash equilibriums of the game. Counterintuitively, we show that (a) when uncertainty about voters’ preferences is high, the advantaged candidate might choose in equilibrium a more extremist strategy than the disadvantaged candidates and that (b) when uncertainty about voters’ preferences is low, there exist equilibriums in which one of the disadvantaged candidates has a larger probability of election than the disadvantaged candidate of the equivalent two-candidate (one advantaged and one disadvantaged candidate) case. Copyright Springer Science+Business Media, LLC 2014

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s11127-012-9948-6
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Public Choice.

Volume (Year): 158 (2014)
Issue (Month): 1 (January)
Pages: 101-120

as in new window
Handle: RePEc:kap:pubcho:v:158:y:2014:i:1:p:101-120

Contact details of provider:
Web page: http://www.springerlink.com/link.asp?id=100332

Related research

Keywords: Candidate valence; Spatial model; Mixed equilibrium;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. T. Groseclose, 2007. "‘One and a Half Dimensional’ Preferences and Majority Rule," Social Choice and Welfare, Springer, vol. 28(2), pages 321-335, February.
  2. Evrenk, Haldun, 2008. "Three-Candidate Competition when Candidates Have Valence: The Base Case," Working Papers 2008-2, Suffolk University, Department of Economics.
  3. Herrera, Helios & Levine, David K. & Martinelli, César, 2008. "Policy platforms, campaign spending and voter participation," Journal of Public Economics, Elsevier, vol. 92(3-4), pages 501-513, April.
  4. Enriqueta Aragonés & Dimitrios Xefteris, 2011. "Candidate quality in a Downsian Model with a Continuous Policy Space," Working Papers 529, Barcelona Graduate School of Economics.
  5. Dix, Manfred & Santore, Rudy, 2002. "Candidate ability and platform choice," Economics Letters, Elsevier, vol. 76(2), pages 189-194, July.
  6. Alexei Zakharov, 2009. "A model of candidate location with endogenous valence," Public Choice, Springer, vol. 138(3), pages 347-366, March.
  7. Norman Schofield, 2007. "The Mean Voter Theorem: Necessary and Sufficient Conditions for Convergent Equilibrium," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 965-980.
  8. Adams, James, 1999. " Policy Divergence in Multicandidate Probabilistic Spatial Voting," Public Choice, Springer, vol. 100(1-2), pages 103-22, July.
  9. Haldun Evrenk & Dmitriy Kha, 2011. "Three-candidate spatial competition when candidates have valence: stochastic voting," Public Choice, Springer, vol. 147(3), pages 421-438, June.
  10. Osborne, Martin J & Pitchik, Carolyn, 1986. "The Nature of Equilibrium in a Location Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(1), pages 223-37, February.
  11. Ansolabehere, Stephen & Snyder, James M, Jr, 2000. " Valence Politics and Equilibrium in Spatial Election Models," Public Choice, Springer, vol. 103(3-4), pages 327-36, June.
  12. Ashworth, Scott & Bueno de Mesquita, Ethan, 2009. "Elections with platform and valence competition," Games and Economic Behavior, Elsevier, vol. 67(1), pages 191-216, September.
  13. Xefteris, Dimitrios, 2012. "Mixed strategy equilibrium in a Downsian model with a favored candidate: A comment," Journal of Economic Theory, Elsevier, vol. 147(1), pages 393-396.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kap:pubcho:v:158:y:2014:i:1:p:101-120. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.