Advanced Search
MyIDEAS: Login

The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets

Contents:

Author Info

  • Pradeep K. Chintagunta

    ()
    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Shyam Gopinath

    ()
    (Kellogg School of Management, Northwestern University, Evanston, Illinois 60208)

  • Sriram Venkataraman

    ()
    (Goizueta Business School, Emory University, Atlanta, Georgia 30322)

Abstract

Our objective in this paper is to measure the impact (valence, volume, and variance) of national online user reviews on designated market area (DMA)-level local geographic box office performance of movies. We account for three complications with analyses that use national-level aggregate box office data: (i) aggregation across heterogeneous markets (spatial aggregation), (ii) serial correlation as a result of sequential release of movies (endogenous rollout), and (iii) serial correlation as a result of other unobserved components that could affect inferences regarding the impact of user reviews. We use daily box office ticket sales data for 148 movies released in the United States during a 16-month period (out of the 874 movies released) along with user review data from the Yahoo! Movies website. The analysis also controls for other possible box office drivers. Our identification strategy rests on our ability to identify plausible instruments for user ratings by exploiting the sequential release of movies across markets--because user reviews can only come from markets where the movie has previously been released, exogenous variables from previous markets would be appropriate instruments in subsequent markets. In contrast with previous studies that have found that the main driver of box office performance is the volume of reviews, we find that it is the valence that seems to matter and not the volume. Furthermore, ignoring the endogenous rollout decision does not seem to have a big impact on the results from our DMA-level analysis. When we carry out our analysis with aggregated national data, we obtain the same results as those from previous studies, i.e., that volume matters but not the valence. Using various market-level controls in the national data model, we attempt to identify the source of this difference. By conducting our empirical analysis at the DMA level and accounting for prerelease advertising, we can classify DMAs based on their responsiveness to firm-initiated marketing effort (advertising) and consumer-generated marketing (online word of mouth). A unique feature of our study is that it allows marketing managers to assess a DMA's responsiveness along these two dimensions. The substantive insights can help studios and distributors evaluate their future product rollout strategies. Although our empirical analysis is conducted using motion picture industry data, our approach to addressing the endogeneity of reviews is generalizable to other industry settings where products are sequentially rolled out.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://dx.doi.org/10.1287/mksc.1100.0572
Download Restriction: no

Bibliographic Info

Article provided by INFORMS in its journal Marketing Science.

Volume (Year): 29 (2010)
Issue (Month): 5 (09-10)
Pages: 944-957

as in new window
Handle: RePEc:inm:ormksc:v:29:y:2010:i:5:p:944-957

Contact details of provider:
Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
Phone: +1-443-757-3500
Fax: 443-757-3515
Email:
Web page: http://www.informs.org/
More information through EDIRC

Related research

Keywords: online word of mouth; sequential new product release; endogeneity; instrumental variables; generalized method of moments; motion pictures;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Joe Cox & Daniel Kaimann, 2013. "The Signaling Effect of Critics - Evidence from a Market for Experience Goods," Working Papers CIE 68, University of Paderborn, CIE Center for International Economics.
  2. Leigh McAlister & Garrett Sonnier & Tom Shively, 2012. "The relationship between online chatter and firm value," Marketing Letters, Springer, vol. 23(1), pages 1-12, March.
  3. Darlene C. Chisolm & George Norman, 2011. "Spatial Competition and market Share: An Application to Motion Pictures," Discussion Papers Series, Department of Economics, Tufts University 0763, Department of Economics, Tufts University.
  4. repec:pdn:wpaper:68 is not listed on IDEAS
  5. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2013. "Platform or Wholesale? Different Implications for Retailers of Online Product," Working Papers 13-14, NET Institute.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:29:y:2010:i:5:p:944-957. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.