IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v12y2016i1p20-40.html
   My bibliography  Save this article

Patent-based technology forecasting: case of electric and hydrogen vehicle

Author

Listed:
  • Samira Ranaei
  • Matti Karvonen
  • Arho Suominen
  • Tuomo Kässi

Abstract

The purpose of this paper is to study the evolution of emerging technological paths in the automotive industry. Worldwide patent data from the years 1990-2010 was collected and utilised to define the technological life cycles of the electric and fuel cell vehicle technologies. The novelty of our study is practicing the patent analysis approach using text mining techniques to collect patents according to their concepts in the automotive industry. The patent analysis results are compared to existing literature and expert opinion studies in alternative fuel vehicles field. The findings suggest that the development of electric vehicles will be quicker with a higher R%D share, compared to hydrogen vehicles. By gathering data and insights, the paper also offers general views on future automotive technology trajectories.

Suggested Citation

  • Samira Ranaei & Matti Karvonen & Arho Suominen & Tuomo Kässi, 2016. "Patent-based technology forecasting: case of electric and hydrogen vehicle," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 12(1), pages 20-40.
  • Handle: RePEc:ids:ijetpo:v:12:y:2016:i:1:p:20-40
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=74490
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanessa Oltra & Maïder Saint Jean, 2006. "Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis," Post-Print hal-00155042, HAL.
    2. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    3. Bakker, Sjoerd, 2010. "The car industry and the blow-out of the hydrogen hype," Energy Policy, Elsevier, vol. 38(11), pages 6540-6544, November.
    4. repec:fth:harver:1473 is not listed on IDEAS
    5. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    6. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
    7. Balconi, Margherita & Brusoni, Stefano & Orsenigo, Luigi, 2010. "In defence of the linear model: An essay," Research Policy, Elsevier, vol. 39(1), pages 1-13, February.
    8. Pohl, Hans & Yarime, Masaru, 2012. "Integrating innovation system and management concepts: The development of electric and hybrid electric vehicles in Japan," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1431-1446.
    9. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    10. Rosenberg,Nathan, 1994. "Exploring the Black Box," Cambridge Books, Cambridge University Press, number 9780521459556, January.
    11. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    12. Pilkington, Alan & Dyerson, Romano & Tissier, Omid, 2002. "The electric vehicle:: Patent data as indicators of technological development," World Patent Information, Elsevier, vol. 24(1), pages 5-12, March.
    13. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    14. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Ulrich & Benjamin Frieske & Stephan A. Schmid & Horst E. Friedrich, 2022. "Monitoring and Forecasting of Key Functions and Technologies for Automated Driving," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
    2. Mykyta Mishchenko, 2024. "Defining innovative areas and prospects to develop the patenting of technological advances in the automotive power plant industry," Eastern-European Journal of Enterprise Technologies, PC TECHNOLOGY CENTER, vol. 1(13 (127)), pages 92-102, February.
    3. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
    2. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    3. J. H. Wesseling & E. M. M. I. Niesten & J. Faber & M. P. Hekkert, 2015. "Business Strategies of Incumbents in the Market for Electric Vehicles: Opportunities and Incentives for Sustainable Innovation," Business Strategy and the Environment, Wiley Blackwell, vol. 24(6), pages 518-531, September.
    4. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    5. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    6. Marina Flamand, 2016. "Studying strategic choices of carmakers in the development of energy storage solutions: a patent analysis," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 16(2), pages 169-192.
    7. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    8. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    9. Daim, Tugrul & Lai, Kuei Kuei & Yalcin, Haydar & Alsoubie, Fayez & Kumar, Vimal, 2020. "Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    10. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    11. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Investigating the dynamics of interdisciplinary evolution in technology developments," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 12-23.
    12. Lorenz, Steffi, 2015. "Diversität und Verbundenheit der unternehmerischen Wissensbasis: Ein neuartiger Messansatz mit Indikatoren aus Innovationsprojekten," Discussion Papers on Strategy and Innovation 15-01, Philipps-University Marburg, Department of Technology and Innovation Management (TIM).
    13. Gaétan de Rassenfosse & Adam B. Jaffe, 2018. "Are patent fees effective at weeding out low‐quality patents?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(1), pages 134-148, March.
    14. Hana Kim & Eungdo Kim, 2018. "How an Open Innovation Strategy for Commercialization Affects the Firm Performance of Korean Healthcare IT SMEs," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    15. Nicola Lacetera, 2003. "Incentives and spillovers in R&D activities: an agency-theoretic analysis of industry-university relations," Microeconomics 0312004, University Library of Munich, Germany.
    16. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    17. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    18. Heide Fier & Andreas Pyka, 2014. "Against the one-way-street: analyzing knowledge transfer from industry to science," The Journal of Technology Transfer, Springer, vol. 39(2), pages 219-246, April.
    19. Schmoch, Ulrich, 2007. "Double-boom cycles and the comeback of science-push and market-pull," Research Policy, Elsevier, vol. 36(7), pages 1000-1015, September.
    20. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:12:y:2016:i:1:p:20-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.