IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00650904.html
   My bibliography  Save this paper

Patents as a measure for eco-innovation

Author

Listed:
  • Vanessa Oltra

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Ray Kemp

    (Institute of Information Sciences and Technology - Department of Computer Science, Massey University)

  • Fred de Vries

    (OTEC - Educational Technology Expertise Centre - Open Universiteit Nederland [Heerlen])

Abstract

This paper examines the usefulness of patent analysis for measuring different types of eco-innovation. The overall conclusion is that patents are a useful means for measuring environmentally motivated product innovations, and more generally technologies with environmental benefits. For these types of innovations it is acceptable to use patent analysis, provided they are carefully screened for relevance. Patent analysis may be used for measuring five attributes of eco-innovation: 1) eco-inventive activities in specific technology fields; 2) international technological diffusion; 3) research and technical capabilities of companies; 4) institutional knowledge sources of eco-innovation; 5) technological spillovers and knowledge flows.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Vanessa Oltra & Ray Kemp & Fred de Vries, 2010. "Patents as a measure for eco-innovation," Post-Print hal-00650904, HAL.
  • Handle: RePEc:hal:journl:hal-00650904
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dora Marinova & Michael McAleer, 2003. "Environmental Technology Strengths: International Rankings Based on US Patent Data," CIRJE F-Series CIRJE-F-204, CIRJE, Faculty of Economics, University of Tokyo.
    2. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    3. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    4. Schankerman, Mark & Pakes, Ariel, 1986. "Estimates of the Value of Patent Rights in European Countries during the Post-1950 Period," Economic Journal, Royal Economic Society, vol. 96(384), pages 1052-1076, December.
    5. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    6. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    7. Alfred Kleinknecht & Kees Van Montfort & Erik Brouwer, 2002. "The Non-Trivial Choice between Innovation Indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(2), pages 109-121.
    8. Johnson, Daniel K N & Popp, David, 2003. "Forced Out of the Closet: The Impact of the American Inventors Protection Act on the Timing of Patent Disclosure," RAND Journal of Economics, The RAND Corporation, vol. 34(1), pages 96-112, Spring.
    9. Jaffe, Adam B., 1989. "Characterizing the "technological position" of firms, with application to quantifying technological opportunity and research spillovers," Research Policy, Elsevier, vol. 18(2), pages 87-97, April.
    10. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    11. Vanessa OLTRA (E3i-IFReDE-GRES) & Maïder SAINT-JEAN (E3i-IFReDE-GRES), 2006. "Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis," Cahiers du GRES (2002-2009) 2006-20, Groupement de Recherches Economiques et Sociales.
    12. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    13. Manuel Frondel & Jens Horbach & Klaus Rennings, 2007. "End‐of‐pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries," Business Strategy and the Environment, Wiley Blackwell, vol. 16(8), pages 571-584, December.
    14. Arundel, Anthony & Kemp, Rene, 2009. "Measuring Eco-Innovation," MERIT Working Papers 2009-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Adam B. Jaffe & Michael S. Fogarty & Bruce A. Banks, 1998. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 183-205, June.
    16. de Vries, F.P. & Withagen, C.A.A.M., 2005. "Innovation and environmental stringency : The case of sulfur dioxide abatement," Other publications TiSEM 9f3f79ab-2646-4f72-845c-4, Tilburg University, School of Economics and Management.
    17. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    18. Nameroff, T. J. & Garant, R. J. & Albert, M. B., 2004. "Adoption of green chemistry: an analysis based on US patents," Research Policy, Elsevier, vol. 33(6-7), pages 959-974, September.
    19. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    20. Bart Verspagen, 2007. "Mapping Technological Trajectories As Patent Citation Networks: A Study On The History Of Fuel Cell Research," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 93-115.
    21. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    22. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    23. David Popp & Tamara Hafner & Nick Johnstone, 2007. "Policy vs. Consumer Pressure: Innovation and Diffusion of Alternative Bleaching Technologies in the Pulp Industry," NBER Working Papers 13439, National Bureau of Economic Research, Inc.
    24. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    25. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    26. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    27. Bart Verspagen, 1997. "Measuring Intersectoral Technology Spillovers: Estimates from the European and US Patent Office Databases," Economic Systems Research, Taylor & Francis Journals, vol. 9(1), pages 47-65.
    28. Daniel K. N. Johnson, 2002. "The OECD Technology Concordance (OTC): Patents by Industry of Manufacture and Sector of Use," OECD Science, Technology and Industry Working Papers 2002/5, OECD Publishing.
    29. Nick Johnstone (ed.), 2007. "Environmental Policy and Corporate Behaviour," Books, Edward Elgar Publishing, number 12551.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    4. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    5. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    6. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    7. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    8. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    9. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    10. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    11. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    12. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    13. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    14. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    15. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    16. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    17. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    18. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    19. del Río González, Pablo, 2009. "The empirical analysis of the determinants for environmental technological change: A research agenda," Ecological Economics, Elsevier, vol. 68(3), pages 861-878, January.
    20. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    21. David Popp, 2004. "International Innovation and Diffusion of Air Pollution Control Technologies: The Effects of NOX and SO2 Regulation in the US, Japan, and Germany," NBER Working Papers 10643, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00650904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.