IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v117y2017icp266-281.html
   My bibliography  Save this article

Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector

Author

Listed:
  • Faria, Lourenço Galvão Diniz
  • Andersen, Maj Munch

Abstract

This paper sheds light on some important but underestimated elements of green industrial dynamics: the evolution of firms' eco-innovation strategies and activities within a sector. While eco-innovation sectoral case studies have taken place before, our analysis is distinct in investigating the rate, direction and extent of eco-innovation in the automotive sector, represented here by the main automakers, in order to identify possibly sectoral-specific patterns in firms' strategies, as opposed to divergent strategic behaviors, grounded on evolutionary economic theory. We conduct a two-step empirical analysis using patent data from 1965 to 2012. Our findings suggest a process of co-evolution of firms' strategies and indicate that strong sectoral-specific patterns of eco-innovation are present in this sector from the mid-2000s onwards. For fuel cells technologies, however, we observe the formation of two antagonist patterns. A further econometric analysis is conducted and indicates that the positioning of the firms between these two groups is correlated with the firms' profit margins and the size of firms' patent portfolios.

Suggested Citation

  • Faria, Lourenço Galvão Diniz & Andersen, Maj Munch, 2017. "Sectoral patterns versus firm-level heterogeneity - The dynamics of eco-innovation strategies in the automotive sector," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 266-281.
  • Handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:266-281
    DOI: 10.1016/j.techfore.2016.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516307107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanessa Oltra & Rene Kemp & Frans P. De Vries, 2010. "Patents as a measure for eco-innovation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(2), pages 130-148.
    2. Mazzanti, Massimiliano & Zoboli, Roberto, 2006. "Examining the Factors Influencing Environmental Innovations," Climate Change Modelling and Policy Working Papers 12041, Fondazione Eni Enrico Mattei (FEEM).
    3. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2013. "Drivers of different types of eco-innovation in European SMEs," Ecological Economics, Elsevier, vol. 92(C), pages 25-33.
    4. Bakker, Sjoerd, 2010. "The car industry and the blow-out of the hydrogen hype," Energy Policy, Elsevier, vol. 38(11), pages 6540-6544, November.
    5. Konrad, Kornelia & Markard, Jochen & Ruef, Annette & Truffer, Bernhard, 2012. "Strategic responses to fuel cell hype and disappointment," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1084-1098.
    6. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    7. Peneder, Michael, 2010. "Technological regimes and the variety of innovation behaviour: Creating integrated taxonomies of firms and sectors," Research Policy, Elsevier, vol. 39(3), pages 323-334, April.
    8. Jean BELIN & Jens HORBACH & Vanessa OLTRA, 2011. "Determinants and Specificities of Eco-innovations – An Econometric Analysis for the French and German Industry based on the Community Innovation Survey," Cahiers du GREThA (2007-2019) 2011-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    9. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    10. repec:fth:harver:1473 is not listed on IDEAS
    11. Cooke, Philip & Gomez Uranga, Mikel & Etxebarria, Goio, 1997. "Regional innovation systems: Institutional and organisational dimensions," Research Policy, Elsevier, vol. 26(4-5), pages 475-491, December.
    12. Wagner, Marcus, 2007. "On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms," Research Policy, Elsevier, vol. 36(10), pages 1587-1602, December.
    13. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    14. Giulio Cainelli & Massimiliano Mazzanti & Sandro Montresor, 2012. "Environmental Innovations, Local Networks and Internationalization," Industry and Innovation, Taylor & Francis Journals, vol. 19(8), pages 697-734, November.
    15. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    16. Paunov, Caroline, 2012. "The global crisis and firms’ investments in innovation," Research Policy, Elsevier, vol. 41(1), pages 24-35.
    17. Giulio Cainelli & Rinaldo Evangelista & Maria Savona, 2006. "Innovation and economic performance in services: a firm-level analysis," Cambridge Journal of Economics, Oxford University Press, vol. 30(3), pages 435-458, May.
    18. Soete, Luc, 1987. "The impact of technological innovation on international trade patterns: The evidence reconsidered," Research Policy, Elsevier, vol. 16(2-4), pages 101-130, August.
    19. Pohl, Hans & Yarime, Masaru, 2012. "Integrating innovation system and management concepts: The development of electric and hybrid electric vehicles in Japan," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1431-1446.
    20. Rene Kemp & Vanessa Oltra, 2011. "Research Insights and Challenges on Eco-Innovation Dynamics," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 249-253.
    21. Blind, Knut & Cremers, Katrin & Mueller, Elisabeth, 2009. "The influence of strategic patenting on companies' patent portfolios," Research Policy, Elsevier, vol. 38(2), pages 428-436, March.
    22. Archibugi, Daniele & Filippetti, Andrea & Frenz, Marion, 2013. "The impact of the economic crisis on innovation: Evidence from Europe," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1247-1260.
    23. Vanessa OLTRA (E3i-IFReDE-GRES) & Maïder SAINT-JEAN (E3i-IFReDE-GRES), 2006. "Variety of technological trajectories in low emission vehicles (LEVs): a patent data analysis," Cahiers du GRES (2002-2009) 2006-20, Groupement de Recherches Economiques et Sociales.
    24. Rugman, Alan M. & Collinson, Simon, 2004. "The Regional Nature of the World's Automotive Sector," European Management Journal, Elsevier, vol. 22(5), pages 471-482, October.
    25. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    26. Andreas Ziegler, 2015. "Disentangling technological innovations: a micro-econometric analysis of their determinants," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(2), pages 315-335, February.
    27. Klaus Rennings & Christian Rammer, 2011. "The Impact of Regulation-Driven Environmental Innovation on Innovation Success and Firm Performance," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 255-283.
    28. Chang, Shann-Bin, 2012. "Using patent analysis to establish technological position: Two different strategic approaches," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 3-15.
    29. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    30. Wesley M. Cohen & Richard C. Levin & David C. Mowery, 1987. "Firm Size and R&D Intensity: A Re-Examination," NBER Working Papers 2205, National Bureau of Economic Research, Inc.
    31. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    32. Mark K. Debe, 2012. "Electrocatalyst approaches and challenges for automotive fuel cells," Nature, Nature, vol. 486(7401), pages 43-51, June.
    33. Dosi, Giovanni, 1997. "Opportunities, Incentives and the Collective Patterns of Technological Change," Economic Journal, Royal Economic Society, vol. 107(444), pages 1530-1547, September.
    34. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    35. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    36. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    37. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
    38. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    39. Rehfeld, Katharina-Maria & Rennings, Klaus & Ziegler, Andreas, 2007. "Integrated product policy and environmental product innovations: An empirical analysis," Ecological Economics, Elsevier, vol. 61(1), pages 91-100, February.
    40. Jens Horbach, 2014. "Do eco-innovations need specific regional characteristics? An econometric analysis for Germany," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(1), pages 23-38, February.
    41. Cohen, Wesley M & Levin, Richard C & Mowery, David C, 1987. "Firm Size and R&D Intensity: A Re-examination," Journal of Industrial Economics, Wiley Blackwell, vol. 35(4), pages 543-565, June.
    42. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    43. Dosi, Giovanni, 1988. "Sources, Procedures, and Microeconomic Effects of Innovation," Journal of Economic Literature, American Economic Association, vol. 26(3), pages 1120-1171, September.
    44. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    45. Malerba, Franco & Orsenigo, Luigi, 1997. "Technological Regimes and Sectoral Patterns of Innovative Activities," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 6(1), pages 83-117.
    46. Malerba, Franco & Orsenigo, Luigi, 1996. "Schumpeterian patterns of innovation are technology-specific," Research Policy, Elsevier, vol. 25(3), pages 451-478, May.
    47. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    48. Abernathy, William J. & Clark, Kim B., 1985. "Innovation: Mapping the winds of creative destruction," Research Policy, Elsevier, vol. 14(1), pages 3-22, February.
    49. Carlota Perez, 2009. "Technological revolutions and techno-economic paradigms," The Other Canon Foundation and Tallinn University of Technology Working Papers in Technology Governance and Economic Dynamics 20, TUT Ragnar Nurkse Department of Innovation and Governance.
    50. Budde, Björn & Alkemade, Floortje & Weber, K. Matthias, 2012. "Expectations as a key to understanding actor strategies in the field of fuel cell and hydrogen vehicles," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1072-1083.
    51. Vanessa Oltra & Maïder Saint Jean, 2009. "Sectoral systems of environmental innovation: an application to the French automotive industry," Post-Print hal-00274413, HAL.
    52. Horbach, Jens, 2008. "Determinants of environmental innovation--New evidence from German panel data sources," Research Policy, Elsevier, vol. 37(1), pages 163-173, February.
    53. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzadeh Phirouzabadi, Amir & Savage, David & Blackmore, Karen & Juniper, James, 2020. "The evolution of dynamic interactions between the knowledge development of powertrain systems," Transport Policy, Elsevier, vol. 93(C), pages 1-16.
    2. Altenburg, Tilman & Corrocher, Nicoletta & Malerba, Franco, 2022. "China's leapfrogging in electromobility. A story of green transformation driving catch-up and competitive advantage," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Shin, Jungwoo & Hwang, Won-Sik & Choi, Hyundo, 2019. "Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: Comparison of electric and hydrogen fuel cell vehicles," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 239-248.
    4. Jiaming Jiang & Yu Zhao, 2023. "Technology Trend Analysis of Japanese Green Vehicle Powertrains Technology Using Patent Citation Data," Energies, MDPI, vol. 16(5), pages 1-14, February.
    5. Konara, Palitha & Lopez, Carmen & Shirodkar, Vikrant, 2021. "Environmental innovation in foreign subsidiaries: The role of home-ecological institutions, subsidiary establishment mode and post-establishment experience," Journal of World Business, Elsevier, vol. 56(6).
    6. Han, Myat Su & Chen, Weiming, 2021. "Determinants of eco-innovation adoption of small and medium enterprises: An empirical analysis in Myanmar," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Nylund, Petra A. & Brem, Alexander & Agarwal, Nivedita, 2022. "Enabling technologies mitigating climate change: The role of dominant designs in environmental innovation ecosystems," Technovation, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanni, Maruf, 2018. "Drivers of eco-innovation in the manufacturing sector of Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 303-314.
    2. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    3. Pinget, Amandine, 2016. "Spécificités des déterminants des innovations environnementales : une approche appliquée aux PME [Specificities of determinants for environmental innovation : an approach applied to SMEs]," MPRA Paper 80108, University Library of Munich, Germany.
    4. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    5. Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    6. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    7. Antonella Biscione & Raul Caruso & Annunziata de Felice, 2021. "Environmental innovation in European transition countries," Applied Economics, Taylor & Francis Journals, vol. 53(5), pages 521-535, January.
    8. Alexandra Rese & Anke Kutschke & Daniel Baier, 2016. "Analyzing The Relative Influence Of Supply Side, Demand Side And Regulatory Factors On The Success Of Collaborative Energy Innovation Projects," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-43, February.
    9. Jana Hojnik, 2017. "In Pursuit of Eco-innovation," UPP Monograph Series, University of Primorska Press, number 978-961-7023-53-4.
    10. Peiró-Signes, Ángel & Segarra-Oña, Marival & Trull-Domínguez, Óscar & Sánchez-Planelles, Joaquín, 2022. "Exposing the ideal combination of endogenous–exogenous drivers for companies’ ecoinnovative orientation: Results from machine-learning methods," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    11. Ghisetti,Claudia & Marzucchi,Alberto & Montresor,Sandro, 2013. "Does external knowledge affect environmental innovations? An empirical investigation of eleven European countries," INGENIO (CSIC-UPV) Working Paper Series 201301, INGENIO (CSIC-UPV), revised 23 May 2013.
    12. Ghisetti, Claudia & Marzucchi, Alberto & Montresor, Sandro, 2015. "The open eco-innovation mode. An empirical investigation of eleven European countries," Research Policy, Elsevier, vol. 44(5), pages 1080-1093.
    13. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    14. Dhekra Ben Amara & Hong Chen, 2022. "Driving factors for eco-innovation orientation: meeting sustainable growth in Tunisian agribusiness," International Entrepreneurship and Management Journal, Springer, vol. 18(2), pages 713-732, June.
    15. Ghisetti, Claudia & Pontoni, Federico, 2015. "Investigating policy and R&D effects on environmental innovation: A meta-analysis," Ecological Economics, Elsevier, vol. 118(C), pages 57-66.
    16. Tariq, Adeel & Badir, Yuosre F. & Tariq, Waqas & Bhutta, Umair Saeed, 2017. "Drivers and consequences of green product and process innovation: A systematic review, conceptual framework, and future outlook," Technology in Society, Elsevier, vol. 51(C), pages 8-23.
    17. Borghesi, Simone & Cainelli, Giulio & Mazzanti, Massimiliano, 2015. "Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry," Research Policy, Elsevier, vol. 44(3), pages 669-683.
    18. Gutsche, Gunnar & Ziegler, Andreas, 2019. "Determinants of environmental product and process innovations: New evidence on the basis of European panel data," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203617, Verein für Socialpolitik / German Economic Association.
    19. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Joana Costa, 2021. "Carrots or Sticks: Which Policies Matter the Most in Sustainable Resource Management?," Resources, MDPI, vol. 10(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:266-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.