IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1715624.html
   My bibliography  Save this article

Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective

Author

Listed:
  • Matthew Oldham

Abstract

The unexplained and inconsistent behavior of financial markets provides the motivation to engage interdisciplinary approaches to understand its intricacies better. A proven approach is to consider investors as heterogeneous interacting agents who form information networks to inform their investment decisions. The rationale is that the topology of these networks has contributed to a better understanding of the erratic behavior of financial markets. Introducing investor heterogeneity also allows researchers to identify the characteristics of higher performing investors and the implications of investors exhibiting short-termism, a feature recognized by some as detrimental to the performance of the economy. To address these topics, an agent-based artificial stock market is implemented, where investors utilize various information sources, including advice from investors in their network, to inform their investment decisions. Over time investors update their trust in their information sources and evolve their network by connecting to outperforming investors—Oracles—and discarding poor advisers, thereby simulating the evolution of an investor network. The model’s most significant finding is uncovering how the market’s behavior is materially affected by the time-horizon of investors, with short-term behavior resulting in greater volatility in the market. Another finding is the reason why short-term investors generally outperform their long-term counterparts, particularly in more volatile environments. By providing significant insights into the formation of an investor network and its ramifications for market volatility and wealth creation (destruction), this paper provides crucial clues regarding the empirical data that needs to be collected, assessed, and tracked to ensure policymakers and investors better understand the dynamics of financial markets.

Suggested Citation

  • Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
  • Handle: RePEc:hin:complx:1715624
    DOI: 10.1155/2019/1715624
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1715624.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1715624.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1715624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Shiller, 1984. "Stock Prices and Social Dynamics," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 15(2), pages 457-510.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    3. Federico Botta & Helen Susannah Moat & H Eugene Stanley & Tobias Preis, 2015. "Quantifying Stock Return Distributions in Financial Markets," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-10, September.
    4. Panchenko, Valentyn & Gerasymchuk, Sergiy & Pavlov, Oleg V., 2013. "Asset price dynamics with heterogeneous beliefs and local network interactions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2623-2642.
    5. Tedeschi, Gabriele & Iori, Giulia & Gallegati, Mauro, 2012. "Herding effects in order driven markets: The rise and fall of gurus," Journal of Economic Behavior & Organization, Elsevier, vol. 81(1), pages 82-96.
    6. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    7. Erik R. Sirri & Peter Tufano, 1998. "Costly Search and Mutual Fund Flows," Journal of Finance, American Finance Association, vol. 53(5), pages 1589-1622, October.
    8. Khaldoun Khashanah & Talal Alsulaiman, 2017. "Connectivity, Information Jumps, and Market Stability: An Agent-Based Approach," Complexity, Hindawi, vol. 2017, pages 1-16, August.
    9. Han N. Ozsoylev & Johan Walden & M. Deniz Yavuz & Recep Bildik, 2014. "Investor Networks in the Stock Market," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1323-1366.
    10. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    11. Andy Kirou & Blazej Ruszczycki & Markus Walser & Neil F. Johnson, 2008. "Computational modeling of collective human behavior: Example of financial markets," Papers 0812.2603, arXiv.org.
    12. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    13. Bernd-O. Heine & Matthias Meyer & Oliver Strangfeld, 2005. "Stylised Facts and the Contribution of Simulation to the Economic Analysis of Budgeting," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-4.
    14. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    15. Cuthbertson, Keith & Nitzsche, Dirk & O'Sullivan, Niall, 2008. "UK mutual fund performance: Skill or luck?," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 613-634, September.
    16. Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    17. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Markose, Sheri M & Alentorn, Amadeo & Krause, Andreas, 2004. "Dynamic Learning, Herding and Guru Effects in Networks," Economics Discussion Papers 3732, University of Essex, Department of Economics.
    20. Gatti, Domenico Delli & Guilmi, Corrado Di & Gaffeo, Edoardo & Giulioni, Gianfranco & Gallegati, Mauro & Palestrini, Antonio, 2005. "A new approach to business fluctuations: heterogeneous interacting agents, scaling laws and financial fragility," Journal of Economic Behavior & Organization, Elsevier, vol. 56(4), pages 489-512, April.
    21. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    22. Arvid Oskar Ivar Hoffmann & Wander Jager & J. H. Von Eije, 2007. "Social Simulation of Stock Markets: Taking It to the Next Level," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-7.
    23. Alfarano, Simone & Milaković, Mishael, 2008. "Should Network Structure Matter in Agent-Based Finance?," Economics Working Papers 2008-04, Christian-Albrechts-University of Kiel, Department of Economics.
    24. Leombruni, Roberto & Richiardi, Matteo, 2005. "Why are economists sceptical about agent-based simulations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 103-109.
    25. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    26. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    27. Ozsoylev, Han N. & Walden, Johan, 2011. "Asset pricing in large information networks," Journal of Economic Theory, Elsevier, vol. 146(6), pages 2252-2280.
    28. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    29. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    30. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    31. Brad M. Barber & Terrance Odean, 2000. "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors," Journal of Finance, American Finance Association, vol. 55(2), pages 773-806, April.
    32. Shiller, Robert J, 1995. "Conversation, Information, and Herd Behavior," American Economic Review, American Economic Association, vol. 85(2), pages 181-185, May.
    33. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    34. Stjepan Begušić & Zvonko Kostanjčar & Dejan Kovač & H. Eugene Stanley & Boris Podobnik, 2018. "Information Feedback in Temporal Networks as a Predictor of Market Crashes," Complexity, Hindawi, vol. 2018, pages 1-13, September.
    35. G. Tedeschi & G. Iori & M. Gallegati, 2009. "The role of communication and imitation in limit order markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 489-497, October.
    36. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
    37. Federico Musciotto & Luca Marotta & Jyrki Piilo & Rosario N. Mantegna, 2018. "Long-term ecology of investors in a financial market," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-12, December.
    38. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    39. F. A. Lutz, 1961. "The Theory of Capital," International Economic Association Series, Palgrave Macmillan, number 978-1-349-08452-4 edited by D. C. Hague, December.
    40. Olivier Gergaud & William T. Ziemba, 2016. "Great Investors: Their Methods, Results and Evaluation," World Scientific Book Chapters, in: GREAT INVESTMENT IDEAS, chapter 9, pages 175-212, World Scientific Publishing Co. Pte. Ltd..
    41. Brad Barber & Reuven Lehavy & Maureen McNichols & Brett Trueman, 2001. "Can Investors Profit from the Prophets? Security Analyst Recommendations and Stock Returns," Journal of Finance, American Finance Association, vol. 56(2), pages 531-563, April.
    42. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    43. Matthew Oldham, 2017. "Market Fluctuations Explained By Dividends And Investor Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-28, December.
    44. Nicholas Kaldor, 1961. "Capital Accumulation and Economic Growth," International Economic Association Series, in: D. C. Hague (ed.), The Theory of Capital, chapter 0, pages 177-222, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oldham, Matthew, 2020. "Quantifying the concerns of Dimon and Buffett with data and computation," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    4. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    6. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    7. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    8. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046.
    9. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    10. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    11. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    12. Tedeschi, Gabriele & Recchioni, Maria Cristina & Berardi, Simone, 2019. "An approach to identifying micro behavior: How banks’ strategies influence financial cycles," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 329-346.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    14. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    15. Guiso, Luigi & Sodini, Paolo, 2013. "Household Finance: An Emerging Field," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1397-1532, Elsevier.
    16. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    17. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    18. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    19. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    20. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1715624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.